
DO NOT MAKE ILLEGAL COPIES OF THIS EBOOK

E-Book Name: Scripting Recipes for Second Life
ISBN: 160439000X
E-Book Price: $9.99 (USD)
Purchasing Information: http://www.heatonresearch.com/book

This E-Book is copyrighted material. It is only for the use of the person who purchased it. Unless you obtained
this ebook from Heaton Research, Inc. you have obtained an illegal copy. For more information contact Heaton
Research at:

http://www.heatonresearch.com

Scripting Recipes for Second Life

Scripting Recipes for Second Life

by Jeff Heaton

Heaton Research, Inc.
St. Louis

Scripting Recipes for Second LifeIV

Scripting Recipes for Second Life

First printing

Publisher: Heaton Research, Inc

Author: Jeff Heaton

Editor: Mark Biss

Cover Art: Carrie Spear

ISBN’s for all Editions:
1-6043900-0-X, Softcover
1-6043900-1-8, Adobe PDF e-book

Copyright © 2007 by Heaton Research Inc., 1734 Clarkson Rd. #107, Chesterfi eld, MO
63017-4976. World rights reserved. The author(s) created reusable code in this publication
expressly for reuse by readers. Heaton Research, Inc. grants readers permission to reuse
the code found in this publication or downloaded from our website so long as (author(s)) are
attributed in any application containing the reusable code and the source code itself is never
redistributed, posted online by electronic transmission, sold or commercially exploited as a
stand-alone product. Aside from this specifi c exception concerning reusable code, no part of
this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including, but not limited to photo copy, photograph, magnetic, or other record, without prior
agreement and written permission of the publisher.

Heaton Research and the Heaton Research logo are both registered trademarks of Hea-
ton Research, Inc., in the United States and/or other countries.

TRADEMARKS: Heaton Research has attempted through out this book to distinguish
proprietary trademarks from descriptive terms by following the capitalization style used by
the manufacturer.

The author and publisher have made their best efforts to prepare this book, so the con-
tent is based upon the fi nal release of software whenever possible. Portions of the manuscript
may be based upon pre-release versions suppled by software manufacturer(s). The author
and the publisher make no representation or warranties of any kind with regard to the com-
pleteness or accuracy of the contents herein and accept no liability of any kind including but
not limited to performance, merchantability, fi tness for any particular purpose, or any losses
or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America.

10 9 8 7 6 5 4 3 2 1

V

SOFTWARE LICENSE AGREEMENT: TERMS AND CONDITIONS
The media and/or any online materials accompanying this book that are available now

or in the future contain programs and/or text fi les (the “Software”) to be used in connection
with the book. Heaton Research, Inc. hereby grants to you a license to use and distribute
software programs that make use of the compiled binary form of this book’s source code. You
may not redistribute the source code contained in this book, without the written permission
of Heaton Research, Inc. Your purchase, acceptance, or use of the Software will constitute
your acceptance of such terms.

The Software compilation is the property of Heaton Research, Inc. unless otherwise indi-
cated and is protected by copyright to Heaton Research, Inc. or other copyright owner(s) as
indicated in the media fi les (the “Owner(s)”). You are hereby granted a license to use and dis-
tribute the Software for your personal, noncommercial use only. You may not reproduce, sell,
distribute, publish, circulate, or commercially exploit the Software, or any portion thereof,
without the written consent of Heaton Research, Inc. and the specifi c copyright owner(s) of
any component software included on this media.

In the event that the Software or components include specifi c license requirements or
end-user agreements, statements of condition, disclaimers, limitations or warranties (“End-
User License”), those End-User Licenses supersede the terms and conditions herein as to
that particular Software component. Your purchase, acceptance, or use of the Software will
constitute your acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all
export laws and regulations of the United States as such laws and regulations may exist from
time to time.

SOFTWARE SUPPORT

Components of the supplemental Software and any offers associated with them may be
supported by the specifi c Owner(s) of that material but they are not supported by Heaton Re-
search, Inc.. Information regarding any available support may be obtained from the Owner(s)
using the information provided in the appropriate README fi les or listed elsewhere on the
media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor
any offer, Heaton Research, Inc. bears no responsibility. This notice concerning support for
the Software is provided for your information only. Heaton Research, Inc. is not the agent or
principal of the Owner(s), and Heaton Research, Inc. is in no way responsible for providing
any support for the Software, nor is it liable or responsible for any support provided, or not
provided, by the Owner(s).

Scripting Recipes for Second LifeVI

WARRANTY

Heaton Research, Inc. warrants the enclosed media to be free of physical defects for a pe-
riod of ninety (90) days after purchase. The Software is not available from Heaton Research,
Inc. in any other form or media than that enclosed herein or posted to www.heatonresearch.
com. If you discover a defect in the media during this warranty period, you may obtain a re-
placement of identical format at no charge by sending the defective media, postage prepaid,
with proof of purchase to:

Heaton Research, Inc.
Customer Support Department
1734 Clarkson Rd #107
Chesterfield, MO 63017-4976

Web: www.heatonresearch.com
E-Mail: support@heatonresearch.com

After the 90-day period, you can obtain replacement media of identical format by send-
ing us the defective disk, proof of purchase, and a check or money order for $10, payable to
Heaton Research, Inc..

DISCLAIMER

Heaton Research, Inc. makes no warranty or representation, either expressed or implied,
with respect to the Software or its contents, quality, performance, merchantability, or fi tness
for a particular purpose. In no event will Heaton Research, Inc., its distributors, or dealers
be liable to you or any other party for direct, indirect, special, incidental, consequential, or
other damages arising out of the use of or inability to use the Software or its contents even if
advised of the possibility of such damage. In the event that the Software includes an online
update feature, Heaton Research, Inc. further disclaims any obligation to provide this feature
for any specifi c duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states. Therefore, the
above exclusion may not apply to you. This warranty provides you with specifi c legal rights;
there may be other rights that you may have that vary from state to state. The pricing of the
book with the Software by Heaton Research, Inc. refl ects the allocation of risk and limitations
on liability contained in this agreement of Terms and Conditions.

SHAREWARE DISTRIBUTION

This Software may contain various programs that are distributed as shareware. Copy-
right laws apply to both shareware and ordinary commercial software, and the copyright
Owner(s) retains all rights. If you try a shareware program and continue using it, you are
expected to register it. Individual programs differ on details of trial periods, registration, and
payment. Please observe the requirements stated in appropriate fi les.

VII

Scripting Recipes for Second LifeVIII

IX

This book is dedicated to

Encog Dod, for all his

 help with this book.

Scripting Recipes for Second LifeX

Acknowledgments
There are several people who I would like to acknowledge. First, I would like to thank the

many people who have given me suggestions and comments on my Second Life scripts.

I would like to thank WordsRU.com for providing editing resources. I would like to thank
Mark Biss for editing the book.

I would like to thank my sister Carrie Spear for layout and formatting suggestions.

XI

Scripting Recipes for Second LifeXII

XIII

Contents at a Glance
Introduction ..XXXI
Chapter 1: Introduction to LSL ...35
Chapter 2: String Handling ...49
Chapter 3: Components for Buildings ..67
Chapter 4: Particle Effects ..99
Chapter 5: Vehicles ...123
Chapter 6: Scanners ...177
Chapter 7: Miscellaneous Recipes ...195
Chapter 8: Commerce ...223
Chapter 9: Rental Property ...269
Chapter 10: Weapons ..289
Chapter 11: Wearable Objects ..317
Appendix A: Downloading Examples ..345
Appendix B: Built In Animations ...347
Appendix C: Event Functions ...351

Scripting Recipes for Second LifeXIV

XV

Contents
Introduction ..XXXI
Chapter 1: Introduction to LSL ...35

State Machines ...35
Handling Events ..37
Communicating ..38
Modifying Objects ..40
Understanding Dialogs ...41
Implementing Basic Security ...43
Summary ..46

Chapter 2: String Handling ...49
Recipe 2.1: String Comparison ..49
Recipe 2.2: String Sets ...56
Recipe 2.3: String Parsing ..61
Summary ..64

Chapter 3: Components for Buildings ..67
Recipe 3.1: Splashing Water ..67
Recipe 3.2: Open Door ..70
Recipe 3.3: Owner Locked Door ...76
Recipe 3.4: Multi-User Lockable Door ...80
Variables Needed for the Door ...85
Recipe 3.5: Teleport Pad ...88
Recipe 3.6: Elevator ..90
Summary ..96

Chapter 4: Particle Effects ..99
Recipe 4.1: Basic Particle Emitter ..99
Recipe 4.2: Chimney ...106
Recipe 4.3: Leaf Generator ...110
Recipe 4.4: Jewelry ..114
Recipe 4.5: Explosion ...118
Summary ..121

Chapter 5: Vehicles ...123
Recipe 5.1: Car ..124
Recipe 5.2: Boat ..144
Recipe 5.3: Helicopter ..158
Recipe 5.4: Super Car ...168
Summary ..175

Contents

Scripting Recipes for Second LifeXVI

Chapter 6: Scanners ...177
Recipe 6.1: Avatar Radar ..178
Recipe 6.2: Notecard Giver ...182
Recipe 6.3: Automatic Door ..184
Recipe 6.4: Traffi c Scanner ..187
Summary ..193

Chapter 7: Miscellaneous Recipes ...195
Recipe 7.1: Avatar Cannon ...195
Recipe 7.2: Analog Clock ..Recipe 7.2: Analog Clock ..Recipe 7.2: Analog Clock 199
Recipe 7.3: Weather Station ...202
Recipe 7.4: Slide Show ...205
Recipe 7.5: Notecard Controlled Slide Show ...207
Recipe 7.6: Announcer Script ...211
Recipe 7.7: Online Indicator ...213
Summary ..220

Chapter 8: Commerce ...223
Recipe 8.1: Camping Pad ...223
Recipe 8.2: Simple Tip Jar ..238
Recipe 8.3: Club Tip Jar ..244
Recipe 8.4: Vendor Script ...257
Summary ..267

Chapter 9: Rental Property ...269
Recipe 9.1: Rental Script ..270
Other Rental Considerations ..284
Summary ..286

Chapter 10: Weapons ..289
Recipe 10.1: Basic Gun ...290
Recipe 10.2: Multi Bullet Gun ...300
Bullets for the Multi Bullet Gun ..306
Summary ..314

Chapter 11: Wearable Objects ..317
Recipe 11.1: Parachute ..317
Recipe 11.2: HUD Parachute ...328
Recipe 11.3: Jet Pack ...Recipe 11.3: Jet Pack ...Recipe 11.3: Jet Pack 334
Recipe 11.4: Anti-Push Bracelet ..340
Summary ..343

Appendix A: Downloading Examples ..345
Appendix B: Built In Animations ...347

XVII

Appendix C: Event Functions ...351

Scripting Recipes for Second LifeXVIII

XIX

Scripting Recipes for Second LifeXX

XXI

Table of Figures
Figure 1.1: Second Life Dialogs ..42
Figure 1.2: Setting the Group of an Object ...45
Figure 3.1: Beach Front Land in Second Life ...68
Figure 3.2: Swimming Pool ...69
Figure 3.3: Door with Center ..71
Figure 3.4: An Elevator ..91
Figure 4.1: Basic Particle Emitter ...100
Figure 4.2: Chimney ..107
Figure 4.3: Fall Leafs ...111
Figure 4.4: Jewelry ...115
Figure 4.5: Explosion ...118
Figure 5.1: Second Life Vehicles ..124
Figure 5.2: A Car in Second Life ...125
Figure 5.3: Setting the Material Type ...126
Figure 5.4: A Car with Two Passengers ..140
Figure 5.5: A Boat in Second Life ...145
Figure 5.6: A Boat with Wake ...157
Figure 5.7: A Helicopter ..158
Figure 6.1: Avatar Radar ...179
Figure 6.2: Notecard Giver ..182
Figure 6.3: Automatic Door ...185
Figure 6.4: Traffi c Scanner ...188
Figure 7.1: Avatar Cannon ..196
Figure 7.2: Analog Clock ...Figure 7.2: Analog Clock ...Figure 7.2: Analog Clock 199
Figure 7.3: Weather Station ..202
Figure 7.4: Slide Show ..205
Figure 7.5: Online Indicator ..213
Figure 8.1: Traffi c ..224
Figure 8.2: A Camping Pad ...225
Figure 8.3: A Tip Jar ..239
Figure 8.4: A Pay Dialog ..244
Figure 8.5: A Second Life Store ..258
Figure 8.6: Using a Vendor Script ...259
Figure 9.1: An Apartment Building ...269
Figure 9.2: The Primary Door ..271
Figure 9.3: The Secondary Door ...283

Contents

Scripting Recipes for Second LifeXXII

Figure 9.4: Setting a Landing Point ..285
Figure 10.1: An Area that Allows Damage ...290
Figure 10.2: Mouselook Mode ..291
Figure 10.3: Holding a Gun ...292
Figure 10.4: Basic Bullet ...298
Figure 10.5: Load the Gun ...301
Figure 10.6: An Avatar in a Cage ..313
Figure 11.1: Wearing a Parachute ..318
Figure 11.2: Parachuting in Second Life ..319
Figure 11.3: Avatar on the Ground at Low Altitude ..323
Figure 11.4: Avatar on the Ground at High Altitude ...324
Figure 11.5: A HUD Display ...329
Figure 11.6: A Jet Pack ...Figure 11.6: A Jet Pack ...Figure 11.6: A Jet Pack 334

XXIII

Scripting Recipes for Second LifeXXIV

XXVContents

Table of Listings
Listing 2.1: String Comparison (StringCompare.lsl) ..49
Listing 2.2: String Comparison (StringCompare.lsl) ..56
Listing 2.3: String Parsing (StringParse.lsl) ...61
Listing 3.1: Splashing Water (Splash.lsl) ...69
Listing 3.2: Open Door (OpenDoor.lsl) ..71
Listing 3.3: Owner Locked Door (OwnerLockedDoor.lsl)77
Listing 3.4: Multi-User Lockable Door (SmartDoor.lsl)80
Listing 3.5: Teleport Pad (Teleport.lsl) ..88
Listing 3.6: Elevator Car (Elevator.lsl) ..91
Listing 3.7: Call Elevator (Call.lsl) ..96
Listing 4.1: Basic Particle Emitter (BasicParticle.lsl)100
Listing 4.2: Chimney (Smoke.lsl) ...107
Listing 4.3: Fall Leafs (Leafs.lsl) ..111
Listing 4.4: Jewelry (Bling.lsl) ..115
Listing 4.5: Explosion (Explode.lsl) ..118
Listing 5.1: Main Car Script for the Root Prim (Car.lsl)127
Listing 5.2: Car Passenger Seat (CarSeat.lsl) ..140
Listing 5.3: Can't Sit Here (DontSitHere.lsl) ...140
Listing 5.4: Car Wheel (WheelScript.lsl) ...142
Listing 5.5: Rotate the Hubcaps (WheelScript.lsl) ...143
Listing 5.6: The Boat Script (Boat.lsl) ..145
Listing 5.7: Boat Wake (BoatWake.lsl) ...154
Listing 5.8: Helicopter Script (Helicopter.lsl) ...158
Listing 5.9: Helicopter Rotors (Blade.lsl) ...166
Listing 5.10: The Super Car (SuperCar.lsl) ...167
Listing 6.1: Avatar Radar (Radar.lsl) ..179
Listing 6.2: Notecard Giver (NotecardGiver.lsl) ..182
Listing 6.3: Automatic Door (AutoDoor.lsl) ..185
Listing 6.4: Traffi c Scanner (Traffi cScanner.lsl) ..188
Listing 7.1: Avatar Cannon (Cannon.lsl) ...196
Listing 7.2: Avatar Cannon (AnalogClock.lsl) ..199
Listing 7.3: Weather Station (Weather.lsl) ..202
Listing 7.4: Slide Show (SlideShow.lsl) ..205
Listing 7.5: A Notecard Controlled Slide Show (SlideControl.not)207
Listing 7.6: A Notecard Controlled Slide Show (NotecardSlideShow.lsl)208
Listing 7.7: An Announcer Script (Announce.lsl) ...211

Scripting Recipes for Second LifeXXVI

Listing 7.7: Online Indicator (Announce.lsl) ..213
Listing 8.1: Camping Pad Confi guration (CampConfi g.not)225
Listing 8.2: Camping Pad Dancing (CampDance.lsl)226
Listing 8.3: Camping Pad Control (Camp.lsl) ...229
Listing 8.4: Simple Tip Jar (TipJar.lsl) ..239
Listing 8.5: Club Tip Jar (ClubTipJar.not) ...245
Listing 8.6: Club Tip Jar (ClubTipJar.lsl) ..246
Listing 8.7: Vendor Notecard (Vendor.not) ...257
Listing 8.8: Main Vendor Script (Vendor.not) ...258
Listing 8.8: The Forward Button (VendorForward.lsl)261
Listing 8.9: The Backward Button (VendorBack.lsl) ..262
Listing 8.10: The Buy Button (VendorBuy.lsl) ...262
Listing 9.1: Primary Rental Door (RentalPrimary.lsl)267
Listing 10.1: Basic Gun (BasicGun.lsl) ...288
Listing 10.2: Basic Bullet (BulletBasic.lsl) ...294
Listing 10.3: Multi Bullet Gun (MultiGun.lsl) ..297
Listing 10.4: Blank Bullet (BulletBlank.lsl) ..302
Listing 10.5: 20% Bullet (Bullet20.lsl) ..303
Listing 10.6: Kill Bullet (BulletKill.lsl) ...304
Listing 10.7: Explosion Bullet (BulletExplode.lsl) ..305
Listing 10.8: Push Bullet (BulletPush.lsl) ...307
Listing 10.9: Cage Bullet (BulletCage.lsl) ...309
Listing 11.1: Parachute (Parachute.lsl) ..315
Listing 11.2: HUD Parachute (ParachuteHUD.lsl) ...325
Listing 11.3: Close Parachute (ParaClose.lsl) ..329
Listing 11.4: Open Parachute (ParaOpen.lsl) ...329
Listing 11.5: Jet Pack (JetPack.lsl) ..330
Listing 11.6: Anti Push Script (NoPush.lsl) ..336

XXVII

Scripting Recipes for Second LifeXXVIII

XXIXContents

Table of Tables
Table 1.1: Communication Distances ...40
Table 4.1: PSYS_PART_FLAGS Flags ...103
Table 4.2: PSYS_SRC_PATTERN Values ...104
Table 4.3: Remaining Particle Emitter Name-Value Pairs105
Table 4.4: Parameters for fakeMakeExplosion ..120
Table 5.1: Vehicle Types ...135
Table 5.2: Floating Point Vehicle Parameters ...136
Table 5.3: Vector Vehicle Parameters ...137
Table 5.4: Rotation Point Vehicle Parameters ..138
Table 5.4: Vector Vehicle Parameters ...150
Table 6.1: Scan Types ...177
Table 10.1: Bullet Types ..300

Scripting Recipes for Second LifeXXX

XXXIIntroduction

 INTRODUCTION

 This book provides many reusable recipes for the Linden Scripting Language (LSL).
These recipes can be used as fully functioning objects in Second Life, or they can be used as
starting points for other projects. The recipes presented in the book span a wide range of
scripts that are commonly programmed in Second Life.

Chapter 1 begins the book by introducing the Linden Scripting Language. This chap-
ter is not intended to teach the Linden Scripting Language. Rather, this chapter will give a
general overview of the Linden Scripting Language to someone who already has previous
programming experience.

Chapter 2 introduces several useful functions. These useful functions can be reused in
many different scripting projects. These functions will be used by many of the recipes later
in this book. Functions are provided that process both numbers and strings.

Chapter 3 introduces scripts for buildings. Buildings are a major part of Second Life.
Scripts can greatly enhance a buildings utility. Scripts often control doors, elevators and
other aspects of a building. This chapter also shows how to create “fake” water above sea
level. Additionally, a teleport pad is introduced that can quickly transport a user anywhere
in the building.

Chapter 4 introduces particle effects. Particles allow explosions, smoke, glisten effects
and many other visual effects. Scripts are provided that produces explosions, falling leaves.
Particles can also be used to create fl ashy jewelry.

Chapter 5 introduces vehicles. This chapter shows how to create land, air and sea ve-
hicles. A car is used to demonstrate land vehicles. A helicopter is used to demonstrate air
vehicles. A boat is used to demonstrate water vehicles. Additionally, a super car is provided
that shares characteristics of a car, boat and helicopter.

Chapter 6 introduces scanner scripts. Scanners allow the script to be aware of the world
around it. Scanners usually scan for avatars around them. However, scanners can also scan
for objects. This chapter shows how to create a notecard giver, a traffi c monitor, and an auto-
matic door. All of these make use of scanners.

Scripting Recipes for Second LifeXXXII

Chapter 7 introduces several miscellaneous scripts that did not fall into other categories.
Yet some of their techniques will be built upon in the remaining chapters of the book. This
chapter shows how to create slideshows and a cannon to shoot an avatar from. An online
status indicator is also presented that displays the availability of an avatar. An analog clock,
with moving hands, is also demonstrated. This chapter also introduces how to use notecards
as confi guration fi les.

Chapter 8 introduces commerce scripts. Commerce occurs when any two Second Life
users exchange money. This is a very important part of Second Life. This chapter shows
how to create a vendor, for a store, as well as tip jars. Chapter 9 continues discussion of e-
commerce by showing how to create an apartment rental script.

Chapter 10 introduces weapon scripts. Weapons infl ict damage on avatars. An avatar
has a health rating form 0 to 100%. If this value drops to zero, then the avatar dies. Death is
no big deal in Second Life, an avatar simply teleports back to its home location when it dies.
This chapter focuses on guns and bullets. The type of bullet fi red is more important than the
gun that fi res it. This chapter provides bullets that damage avatars, as well as blanks that do
no damage. Additionally, bullets are provided that trap and push avatars.

Chapter 11 introduces scripts that can be used with wearable objects. This chapter in-
cludes scripts for anti-push bracelets, jet packs and parachutes.

The examples are listed in this book. However, it is not necessary to type them out.
All recipes can be obtained, from Second Life, in fully working form. To obtain any of the
recipes, visit the Heaton Research HQ on Encogia Island. The Heaton Research HQ can be
found at the following location.

http://slurl.com/secondlife/Encogia/200/196/23

XXXIIIIntroduction

Scripting Recipes for Second LifeXXXIV

35Chapter 1: Introduction to LSL

 CHAPTER 1: INTRODUCTION TO LSL

 • Understanding State Machines
 • Implementing Basic Security
 • Changing the Appearance of an Object
 • Communicating
 • Using Dialogs

 This book is designed for those who understand the basics of building and scripting in
Second Life. For these people this book will provide many useful Linden Scripting Language
(LSL) examples. These examples are very useful in their own right, but also serve as starting
points for more complex Linden Scripting Language projects.

 Chapter 1 begins with a quick review of the Linden Scripting Language. This chapter is
not designed to teach the Linden Scripting Language to someone without programming ex-
perience. If you have already programmed a language, e.g.., C, C++, Java or C#, this chapter
will provide suffi cient introduction to the Linden Scripting Language to get you started.

 If you have no programming experience, review one of the many tutorials for the Linden
Scripting Language. A Google search on "LSL Tutorial" will reveal a few.

 This chapter will now introduce the Linden Scripting Language, beginning with state
machines.

 State Machines
 The concept of a state machine is not unique to Second Life. State machines are a com-

mon programming paradigm. However, no language makes the concept of a state machine
as integral as the Linden Scripting Language. Many of the recipes in this book use state ma-
chines. As a result, it is very important to understand the concept of a state machine.

 To see state machines in action, consider the default script, which is automatically gener-
ated by Second Life, when a new script is created. This script is shown here.

 default
{
 state_entry()
 {
 llSay(0, "Hello, Avatar!");
 }

Scripting Recipes for Second Life36

 touch_start(integer total_number)
 {
 llSay(0, "Touched.");
 }
}

 This script starts with the word default . The word default specifi es the name of
the state that the enclosed code belongs to. For this script there is only one state. This state,
which is named default , is the starting state for any script in Second Life.

 Many scripts are constructed entirely within their default state. This is often bad
design in Second Life. Consider the following script, which implements a simple switch that
can be turned on or off.

 integer value;

default
{
 state_entry()
 {
 value = TRUE;
 }

 touch_start(integer total_number)
 {
 if(value==TRUE)
 {
 llSay(0,"On");
 value = FALSE;
 }
 else
 {
 llSay(0,"Off");
 value = TRUE;
 }
 }
}

 As can be seen, a global variable, named value , is set to either TRUE or FALSE . As
the user touches the object, the object will say either “On” or “Off”. As the object is touched
these values alternate. Also, a note on global variables. Global variables are normally con-
sidered bad programming practice. However in Second Life, there is really little choice as to
whether to use them or not. Because the Linden Scripting Language does not support user
defi ned classes, global variables are the primary way for a script to hold values long-term.

37Chapter 1: Introduction to LSL

 This same functionality could be created using a state machine. The following lines of
code do this.

 default
{
 touch_start(integer total_number)
 {
 llSay(0,"On");
 state off;
 }
}

state off
{
 touch_start(integer total_number)
 {
 llSay(0,"Off");
 state default;
 }
}

 The above code creates a second state, named off . This gives the above script two
states: default and off . Both states contain their own touch_start event han-
dler. Both states use the state command to switch to the opposite state when the object
is touched.

 The Linden Scripting Language is optimized for state engines. Because of this, state
engines should be used when possible.

 Handling Events
 The last section showed how the touch_start function is called whenever an avatar

touches an object. The touch_start function is an event handler. Second Life includes
many different event handlers. The recipes in this book make use of many of these event
handlers.

 There are many different event handlers in the Linden Scripting Language. Appendix C,
“Event Types” provides a listing of all of the event types in the Linden Scripting Language.

 Another very common event type is the timer event. Many of the recipes in this book
use timer events. The following script uses timer events.

 default
{
 state_entry()
 {
 llSetTimerEvent(1);
 }

Scripting Recipes for Second Life38

 touch_start(integer total_number)
 {
 llSetTimerEvent(0);
 }

 timer()
 {
 llSay(0,"Timer");
 }
}

 The above script starts with a state_entry event handler. The state_entry
event handler is called when the object enters the state associated with the event handler.
In this case, the state_entry event handler is called when the default state is en-
tered.

 The provided state_entry event handler begins by calling the
 llSetTimerEvent function to establish a timer. The parameter passed to the
 llSetTimerEvent function call specifi es the number of seconds between timer events.
To disable the timer call the llSetTimerEvent function with a value of zero.

 Every time a timer event occurs, the timer event handler is called. The above
script says “Timer” each time that the timer event occurs.

 Communicating
 Objects in Second Life can communicate in many of the same ways that avatars com-

municate. Objects listen to conversations going on around them. Objects can also speak
and participate in those conversations. Additionally, objects can send instant messages to
avatars. However, instant messages between an avatar and an object are one-way. An avatar
cannot send an instant message back to an object.

 The following script demonstrates how an object can listen to conversations going on
around it. The object will wait for someone to say either “hello” or “goodbye”. Once the
object detects either of these words, the object makes an appropriate greeting to the avatar
that spoke to the object.

 integer CHANNEL = 0;

default
{
 state_entry()
 {
 llListen(CHANNEL, "", NULL_KEY, "");
 }

39Chapter 1: Introduction to LSL

 listen(integer channel, string name, key id,
 string message)
 {
 if(llToLower(message) == "hello")
 {
 llSay(CHANNEL,"Hello " + name);
 }
 else if(llToLower(message) == "goodbye")
 {
 llSay(CHANNEL,"Goodbye " + name);
 }
 }
}

 For an object to begin listening, the object must call the llListen function. This
function specifi es the channel the object would like to listen on. The above script calls the
 llListen function in the state_entry event handler. The script specifi es that it
would like to listen to the channel specifi ed by the CHANNEL variable. The Linden Script-
ing Language does not have user defi ned constants. As a result, the above declaration of
 CHANNEL is as close as we can come to a constant.

 Channel zero is the normal conversation channel in Second Life. All communication
between avatars is on channel zero. Therefore, by requesting to listen on channel zero, the
object will be notifi ed anytime something is said near the object.

 The above script contains a listen event handler. This event handler is called each
time something is said near the object. The object checks for either “hello” or “goodbye”.
Because the strings are converted to lower case, the user could also enter “Hello” or any mix-
ture of upper and lower case characters. The script responds with a greeting directed to the
avatar's name. The avatar's name was passed in as a parameter named name .

 The llSay function is used when a script wants to say something. The above calls to
 llSay use channel zero. However, often objects want to communicate with each other, and
not allow nearby avatars to listen. To do this, the script should specify a channel other than
zero. Many recipes in this book communicate on channels other than zero.

 In addition to llSay , there are three other functions allow a script to talk. The only
difference between the four communication functions is the distance they cover. Table 1.1
summarizes the communication functions.

Scripting Recipes for Second Life40

 Table 1.1: Communication Distances

Communication Function Distance
llWhisper 10m
llSay 20m
llShout 100m
llRegionSay Entire region, cannot be used on channel 0.

 There is a fi fth communication function, with unlimited range. The
 llInstantMessage function allows an instant message to be sent to the specifi ed ava-
tar.

 default
{
 touch_start(integer total_num)
 {
 // get the key of the objects owner.
 key owner=llGetOwner();
 llInstantMessage(owner,llKey2Name(owner)+", "
 + (string)total_num +" Avatar(s) touched me!");
 }
}

 The above script sends a message to the object's owner every time the object is touched.
It is also possible to send a message to the object's owner by using the llOwnerSay
function. However, llOwnerSay does not have the unlimited distance of a
 llInstantMessage function call.

 Modifying Objects
 It is possible to modify objects using the Linden Scripting Language. Every aspect of

an object can be modifi ed using script. A large number of functions in the Linden Scripting
Language allow the script to change the numerous properties available.

 A number of these functions will be used by later recipes in this book. A script that
changes the color of an object is shown here. This script will change the object to red, blue
or green, depending on what the user says.

 integer CHANNEL = 0;

default
{
 state_entry()
 {
 llListen(CHANNEL, "", NULL_KEY, "");
 }

41Chapter 1: Introduction to LSL

 listen(integer channel, string name, key id,
 string message)
 {
 if(llToLower(message) == "red")
 {
 llSetColor(<255,0,0>,ALL_SIDES);
 }
 else if(llToLower(message) == "green")
 {
 llSetColor(<0,255,0>,ALL_SIDES);
 }
 else if(llToLower(message) == "blue")
 {
 llSetColor(<0,0,255>,ALL_SIDES);
 }
 }
}

 To change the color of an object, the above code uses the llSetColor function. This
function must be passed two parameters. The fi rst is a vector specifying the desired color.
The second parameter specifi es to which side this color should be applied. For this example,
the ALL_SIDES constant is used, which specifi es that all of the sides should be set to the
specifi ed color.

 The color value is specifi ed as a vector . For example, <255,0,0> specifi es the
color red. The fi rst number is red, the second green, and the third blue. Using red, green and
blue values of nearly any color can be specifi ed. The valid range for each color component is
between zero and 255.

 Understanding Dialogs
 The Linden Scripting Language allows much more direct interaction with avatars than

simple touch events. It is also possible to create a dialog. A Second Life dialog can be seen
in Figure 1.1.

Scripting Recipes for Second Life42

 Figure 1.1: Second Life Dialogs

 The following script makes use if a dialog to allow the user to select a color.

 integer CHANNEL = 10;

default
{
 state_entry()
 {
 llListen(CHANNEL, "", NULL_KEY, "");
 }

 touch_start(integer total_num)
 {
 list l = ["red","green","blue"];
 key who = llDetectedKey(0);
 llDialog(who, "Where to?", l, CHANNEL);
 }

43Chapter 1: Introduction to LSL

 listen(integer channel, string name, key id,
 string message)
 {
 if(llToLower(message) == "red")
 {
 llSetColor(<255,0,0>,ALL_SIDES);
 }
 else if(llToLower(message) == "green")
 {
 llSetColor(<0,255,0>,ALL_SIDES);
 }
 else if(llToLower(message) == "blue")
 {
 llSetColor(<0,0,255>,ALL_SIDES);
 }
 }
}

 This script is very similar to the script presented in the previous section. There are two
main differences. First, this script makes use of channel 10, rather than channel zero. The
second difference is that this script uses a dialog.

 The dialog is used at the end of the touch_start event handler. Calling the
 llDialog function creates a dialog. The dialog displays buttons that correspond to the
 list that was passed into the llDialog function.

 Once the user selects one of the options from the dialog, the name of that button is “said”
over the specifi ed channel. This causes the user's choice to be picked up by the listen
event handler. In this way, implementing a dialog is very similar to implementing a script that
listens to user conversation.

 Implementing Basic Security
 Some objects will only function when their owner is trying to use them. It is also possible

to program an object to only function with group members. The following sections show how
to implement basic security both for the owner and for groups.

 Implementing Owner Security

 Sometimes an object will only work with the owner of that object. This is particularly
true of vehicles. The following script shows how to detect if someone, other than the owner,
is trying to use the object.

 default
{
 touch_start(integer total_number)
 {

Scripting Recipes for Second Life44

 integer i;
 for(i=0;i<total_number;i++)
 {
 if(llDetectedKey(i)!=llGetOwner())
 {
 llSay(0, llDetectedName(i)
 + " you are not my owner.");
 }
 else
 {
 llSay(0, llDetectedName(i)
 + " you are my owner.");
 }
 }
 }
}

 When the above script is touched, the above script's touch_start event handler
is called. The touch_start event handler is passed a value that indicates how many
avatar's are touching it at once. It is very rare that more than one avatar will be touching the
object at once. However, if the object is likely to have more than one avatar touching at once,
the script should use the total_number parameter.

 This script makes use of the total_number parameter. A loop counts through all
the avatars that have touched the object. The key to each touching avatar is obtained with
 llDetectedKey . This key is compared against the owner of the object. If the owner
and touching avatar are not the same, the avatar is informed that they are not welcome. This
is a quick method to determine whether an avatar is the owner or not.

 Implementing Group Security

 Sometimes a object will only work with the group of that object. The following script
shows how to detect if someone, other than the group, is trying to use the object.

 The group that an object is in can be set from the object properties window. Figure 1.2
shows an object with a group set.

45Chapter 1: Introduction to LSL

 Figure 1.2: Setting the Group of an Object

 The following script checks to see if the user that touched the object is in the same group
as the object being touched.

 default
{
 touch_start(integer total_number)
 {
 integer i;
 for(i=0;i<total_number;i++)
 {
 if(llDetectedGroup(i)==FALSE)
 {
 llSay(0, llDetectedName(i)
+ " you must be in correct group.");
 }
 else
 {
 llSay(0, llDetectedName(i)
+ " you are in my group.");
 }
 }

Scripting Recipes for Second Life46

 }
}

 To detect whether the touching avatar is in the same group as the object, the
 llDetectGroup function is called. If the avatar is in the same group, a value of TRUE
is returned, otherwise FALSE is returned.

 Summary
 This chapter introduced some basic concepts that will be used by later chapters in this

book. Very short scripts that introduced key concepts were presented. None of the scripts
presented in this chapter would be very useful by themselves. However, they illustrate tech-
niques that recipes in future chapters will use.

 In this chapter object communication was demonstrated. Objects can both talk and listen
to avatars. Additionally, an object can send an instant message. However, it is impossible for
an object to receive an instant message. Objects can neither receive instant messages from
other objects nor avatars. Dialogs can also be presented to communicate with avatars.

 Objects can modify their appearance. There are many functions available to modify the
appearance of an object. This chapter showed how to change the color of an object. Many
of the recipes presented later in this book will change the appearance of an object in other
ways.

 Sometimes an object should only function with the owner of that object or the group to
which an object belongs. It is possible to compare the avatar that is trying to use the object
to the owner of the object. If the avatar using the object does not match the owner, then the
object will not allow itself to be used. The same check can be performed on groups.

 The Linden Scripting Language allows user functions to be created. The next chapter
presents useful functions that may be useful in other scripts. Recipes presented later in this
book will use some of these functions.

47Chapter 1: Introduction to LSL

Scripting Recipes for Second Life48

49Chapter 2: String Handling

 CHAPTER 2: STRING HANDLING

 • Comparing Strings
 • Determining String Set Membership
 • Parsing Strings

 The Linden Scripting Language contains many useful functions. However, it is also pos-
sible for a script programmer to add functions of their own. This chapter presents several
useful functions that can be used in conjunction with larger scripts.

 This chapter presents functions for string processing. These string functions deal with
three areas. Firstly, string comparison functions will be demonstrated. These functions allow
the script to compare strings in various ways. Secondly, string set functions will be demon-
strated. These allow the script to determine whether a string is numeric, alphanumeric or
any other combination of allowed characters. Finally, string parsing will be demonstrated.

 Other recipes in this book make use of the recipes presented in this chapter.

 Recipe 2.1: String Comparison
 The Linden Scripting Language makes it very easy to compare two strings. To compare

two strings, named stra and strb , use the following code:

 if(stra == strb)
{
 llSay(0,”Equal.”);
}

 While this method of string comparison is good for determining whether two strings
are exactly equal to each other, sometimes more advanced string comparison is called for. A
script might need to determine whether two strings are equal, and ignore the case. Addition-
ally, it might be necessary to determine which string would appear fi rst in a dictionary.

 Recipe 2.1 meets these needs. This recipe can be seen in Listing 2.1.

 Listing 2.1: String Comparison (StringCompare.lsl)

 string CHARS = "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM-
NOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~";

Scripting Recipes for Second Life50

integer compareLen(string a, string b,integer len)
{
 integer result = 0;
 if(a != b)
 {
 integer index = 0;
 do
 {
 string chara = llGetSubString(a,index,index);
 string charb = llGetSubString(b,index,index);

 integer posa = llSubStringIndex(CHARS ,chara);
 integer posb = llSubStringIndex(CHARS ,charb);

 if((posa >= 0) && (posb >= 0))
 {
 result = posa - posb;
 }
 else if(posa >= 0)
 {
 result = 1;
 }
 else if(posb >= 0)
 {
 result = -1;
 }

 if(result != 0) index = len;
 ++index;

 }
 while(index < len);
 }

 return result;
}

integer compareNoCaseLen(string a, string b,integer len)
{
 string stra = llToLower(a);
 string strb = llToLower(b);
 return compareLen(stra,strb,len);
}

51Chapter 2: String Handling

integer compare(string a, string b)
{
 integer lena = llStringLength(a);
 integer lenb = llStringLength(b);
 integer result;
 if(lena < lenb)
 result = compareLen(a,b,lena);
 else
 result = compareLen(a,b,lenb);

 return result;
}

integer compareNoCase(string a, string b)
{
 integer la = llStringLength(a);
 integer lb = llStringLength(b);
 string stra = llToLower(a);
 string strb = llToLower(b);
 integer result;
 if(la < lb)
 result = compareNoCaseLen(stra,strb,la);
 else
 result = compareNoCaseLen(stra,strb,lb);

 return result;
}

// Some test uses
default
{
 state_entry()
 {
 llSay(0, "compareNoCase(hello,HELLO): "
 + (string)compareNoCase("jeff","Jeff"));
 llSay(0, "compare(hello,HELLO): "
 + (string)compare("jeff","Jeff"));
 llSay(0, "compare(aaa,bbb): "
 + (string)compare("aaa","bbb"));
 llSay(0, "compare(aaa,bbb): "
 + (string)compare("bbb","aaa"));
 }
}

Scripting Recipes for Second Life52

 This recipe begins by defi ning a variable, CHARS , which holds all of the characters that
can be compared. This variable also defi nes the order in which characters will be sorted.
This variable is declared as follows:

 string CHARS = "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM-
NOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~";

 For example, if the character “!” were to be compared to “#”, the string comparison func-
tion would report that “!” occurs fi rst, and “#” second. This is because of the order of these
two characters in the above list.

 Using the compareLen Function

 To compare two strings, the compareLen function is provided.

 integer compareLen(string a, string b,integer len)
{

 The compareLen function accepts three parameters. The fi rst two are the strings to
compare. The third parameter is the length of characters to compare. For example, if fi ve
were specifi ed as the len variable, then characters zero through four would be compared.

 The compareLen function returns one of these three values.

 • Less than zero, string a is less than string b
 • Zero, string a and string b are equal
 • Greater than zero, string a is greater than string b

 A variable, named result is created to hold the result of the comparison. If the two
strings are not equal, the program begins the process of determining which string occurs
fi rst alphabetically.

 integer result = 0;
 if(a != b)
 {
 integer index = 0;
 do
 {

 To determine which string occurs fi rst alphabetically, a do/loop is used to loop across
all of the characters in the string.

 string chara = llGetSubString(a,index,index);
 string charb = llGetSubString(b,index,index);

 The individual characters for each position are extracted from the strings.

 integer posa = llSubStringIndex(CHARS ,chara);
 integer posb = llSubStringIndex(CHARS ,charb);

53Chapter 2: String Handling

 The position of each character is calculated. This numeric value allows the program to
determine the alphabetical order of the two characters.

 If both posa and posb are greater than zero, both characters were found in the
 CHARS variable. If this is the case, the result variable will be the difference between
them. If they are equal, this will result in a value of zero. If they are not equal, the result
variable will hold a value either greater or less than zero, depending on whether posa or
 posb was greater.

 if((posa >= 0) && (posb >= 0))
 {
 result = posa - posb;
 }

 If character a was found, but not character b then return a value of one, which indicates
that string a is greater than string b .

 else if(posa >= 0)
 {
 result = 1;
 }

 If character b was found, but not character a then return a value of negative one, which
indicates that string b is greater than string a .

 else if(posb >= 0)
 {
 result = -1;
 }

 If the two characters were equal, continue with the loop.

 if(result != 0) index = len;
 ++index;

 Continue looping until the end of the string is reached.

 }
 while(index < len);
 }
 return result;
}

 Finally, return the result variable.

Scripting Recipes for Second Life54

 Understanding the compareNoCaseLen Function

 Sometimes it is useful to compare two strings and ignore case. The
 compareNoCaseLen function does this. The compareNoCaseLen function ac-

cepts three parameters. The fi rst two are the strings to compare. The third parameter is the
length of characters to compare.

 integer compareNoCaseLen(string a, string b,integer len)
{

 First, the two strings are converted to lower case.

 string stra = llToLower(a);
 string strb = llToLower(b);
 return compareLen(stra,strb,len);
}

 Finally, they are compared using the compareLen function discussed in the previous
section.

 Understanding the compare Function

 The two string functions presented so far allow a length to be specifi ed. This can be very
useful if only the fi rst part of the strings should be compared. However, usually the entire
string should be compared. The compare function compares the entire string.

 integer compare(string a, string b)
{

 First, the length of each string is calculated.

 integer lena = llStringLength(a);
 integer lenb = llStringLength(b);

 The compareLen method is called to perform the comparison. The length of the
smallest string is used in the comparison.

 integer result;
 if(lena < lenb)
 result = compareLen(a,b,lena);
 else
 result = compareLen(a,b,lenb);

 return result;
}

 Finally, the result variable is returned.

 Understanding the compareNoCase Function

 The compareNoCase function works just like compareNoCaseLen , except
that no length is provided. The entire string will be compared.

55Chapter 2: String Handling

 integer compareNoCase(string a, string b)
{

 First the length of each string is calculated.

 integer la = llStringLength(a);
 integer lb = llStringLength(b);

 Next, the strings are converted into lowercase.

 string stra = llToLower(a);
 string strb = llToLower(b);
 integer result;

 The compareLen method is called to perform the actual comparison. The length of
the smallest string is used in the comparison.

 if(la < lb)
 result = compareLen(stra,strb,la);
 else
 result = compareLen(stra,strb,lb);

 return result;
}

 Finally, the result is returned.

 Comparing Strings

 The script includes a simple state_entry function that tests the functions present-
ed in this recipe.

 default
{
 state_entry()
 {
 llSay(0, "compareNoCase(hello,HELLO): "
 + (string)compareNoCase("jeff","Jeff"));
 llSay(0, "compare(hello,HELLO): "
 + (string)compare("jeff","Jeff"));
 llSay(0, "compare(aaa,bbb): "
 + (string)compare("aaa","bbb"));
 llSay(0, "compare(aaa,bbb): "
 + (string)compare("bbb","aaa"));
 }
}

Scripting Recipes for Second Life56

The output the above script is shown here.

 [20:52] Object: compareNoCase(hello,HELLO): 0
[20:52] Object: compare(hello,HELLO): 31
[20:52] Object: compare(aaa,bbb): -1
[20:52] Object: compare(aaa,bbb): 1

 The above output demonstrates how the functions can be used.

 Recipe 2.2: String Sets
 Often it is desirable to test whether a string is in a specifi c set of characters. Recipe 2.2 al-

lows a string to be tested to see whether the string is a member of one of the following sets:

 • Numeric
 • Alphabetic
 • Alphanumeric

 Recipe 2.2 is shown in Listing 2.2.

 Listing 2.2: String Set Comparison (StringSetCompare.lsl)

string CHARS = “!\”#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM
NOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~”;

integer compareLen(string a, string b,integer len)
{
 integer result = 0;
 if(a != b)
 {
 integer index = 0;
 do
 {
 string chara = llGetSubString(a,index,index);
 string charb = llGetSubString(b,index,index);

 integer posa = llSubStringIndex(CHARS ,chara);
 integer posb = llSubStringIndex(CHARS ,charb);

 if((posa >= 0) && (posb >= 0))
 {
 result = posa - posb;
 }
 else if(posa >= 0)
 {
 result = 1;
 }
 else if(posb >= 0)

57Chapter 2: String Handling

 {
 result = -1;
 }

 if(result != 0) index = len;
 ++index;

 }
 while(index < len);
 }

 return result;
}

integer compareNoCaseLen(string a, string b,integer len)
{
 string stra = llToLower(a);
 string strb = llToLower(b);
 return compareLen(stra,strb,len);
}

integer compare(string a, string b)
{
 integer lena = llStringLength(a);
 integer lenb = llStringLength(b);
 integer result;
 if(lena < lenb)
 result = compareLen(a,b,lena);
 else
 result = compareLen(a,b,lenb);

 return result;
}

integer compareNoCase(string a, string b)
{
 integer la = llStringLength(a);
 integer lb = llStringLength(b);
 string stra = llToLower(a);
 string strb = llToLower(b);
 integer result;
 if(la < lb)
 result = compareNoCaseLen(stra,strb,la);
 else
 result = compareNoCaseLen(stra,strb,lb);

Scripting Recipes for Second Life58

 return result;
}

// Some test uses
default
{
 state_entry()
 {
 llSay(0, "compareNoCase(hello,HELLO): "
 + (string)compareNoCase("jeff","Jeff"));
 llSay(0, "compare(hello,HELLO): "
 + (string)compare("jeff","Jeff"));
 llSay(0, "compare(aaa,bbb): "
 + (string)compare("aaa","bbb"));
 llSay(0, "compare(aaa,bbb): "
 + (string)compare("bbb","aaa"));
 }
}

This recipe begins by defi ning several different character sets. The variable named
 CHARS holds all of the characters that this recipe deals with. The variable LETTERS holds
the upper and lower case letters. The variable NUMBERS holds the ten digits.

 string CHARS = " !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM
NOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
string LETTERS= "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstu
vwxyz";
string NUMBERS = "0123456789";

 These character sets will be used by the functions in this recipe.

 Understanding the onlyContains Function

 The onlyContains function determines whether one string only contains characters
from a second string. All of the other set functions are based upon the onlyContains
function.

 integer onlyContains(string a, string b)
{

 The onlyContains function accepts two parameters. The fi rst parameter, a , speci-
fi es the string that is to be examined. The second parameter, b , is the set of characters that
a should contain. If the a string only contains the characters in b , then the value of TRUE is
returned, otherwise FALSE is returned.

 The function begins by obtaining the length of string a .

59Chapter 2: String Handling

 integer l = llStringLength(a);
 integer result = FALSE;
 if(l != 0)
 {

 If string a has a zero length value, return FALSE , because string a contains no charac-
ters, let alone those specifi ed in string b .

 result = TRUE;
 integer index = 0;
 do
 {

 The characters from string a are separated one by one and checked against string b .

 string chara = llGetSubString(a,index,index);
 integer posa = llSubStringIndex(b,chara);

 If the character is not found in string b , return FALSE .

 if(posa < 0)
 {
 result = FALSE;
 index = l;
 }
 ++index;

 Continue looping until the end of string a is reached.

 }
 while(index < l);
 }
 return result;
}

 Finally, return the result. Using the containsOnly function, a variety of useful
set membership functions can be created. These will be discussed in the next sections.

 Understanding the isNumeric Function

 The isNumeric function uses the onlyContains function to determine whether
the specifi ed string only contains digits. To do this, the NUMBERS variable, which contains
the digits, is used in conjunction with the onlyContains function.

 integer isNumeric(string a)
{
 return onlyContains(a,NUMBERS);
}

 This function allows a script to quickly determine whether a string is numeric.

Scripting Recipes for Second Life60

 Understanding the isAlpha Function

 The isAlpha function determines whether the specifi ed string is a set of only letters.
Either capital or lowercase is acceptable. The isAlpha function works by ensuring that
the string only contains characters from the LETTERS string.

 integer isAlpha(string a)
{
 return onlyContains(a,LETTERS);
}

 This function allows a script to quickly determine whether a string only contains letters.

 Understanding the isAlphanumeric Function

 The isAlphanumeric function determines whether the specifi ed string is a set of
only letters and digits. Either capital or lowercase is acceptable. The isAlphanumeric
function works by ensuring that the string only contains characters from the LETTERS or
 NUMBERS strings.

 integer isAlphanumeric(string a)
{
 return onlyContains(a,LETTERS + NUMBERS);
}

 This function allows a script to quickly determine whether a string contains only digits
and letters.

 Testing String Sets

 The script includes a simple state_entry function that tests the functions present-
ed in this recipe. This shows how the functions in this recipe behave when passed various
types of data.

 default
{
 state_entry()
 {
 llSay(0,"isNumeric(abc): " + (string)isNumeric("abc"));
 llSay(0,"isNumeric(123): " + (string)isNumeric("123"));
 llSay(0,"isAlpha(abc): " + (string)isAlpha("abc"));
 llSay(0,"isAlpha(123): " + (string)isAlpha("123"));
 llSay(0,"isAlphanumeric(abc123): "
 + (string)isAlphanumeric("abc123"));
 llSay(0,"isAlphanumeric(123!!!!): "
 + (string)isAlphanumeric("123!!!!"));
 }
}

61Chapter 2: String Handling

 When run the above code will produce the following output.

 [3:24] Object: isNumeric(abc): 0
[3:24] Object: isNumeric(123): 1
[3:24] Object: isAlpha(abc): 1
[3:24] Object: isAlpha(123): 0
[3:24] Object: isAlphanumeric(abc123): 1
[3:24] Object: isAlphanumeric(123!!!!): 0

 It is also possible to parse strings. This will be discussed in the next section.

 Recipe 2.3: String Parsing
 String parsing is the process whereby a string is divided into substrings so that the com-

puter can understand the string. To see why string parsing is needed, consider a future
example in this book. Later in this book recipes that allow a locking door to be installed will
be demonstrated. This locking door allows the owner of the door to add other users to a list
of allowed users.

 To add users to this door the owner must say their names. For example, to add the user
“Encog Dod” the owner must say the following to the door.

 door add Encog Dod

 To process this command properly, the door must divide the string into the words that
make it up. This allows the door to make sure that the command starts with the word “door”.
String parsing also allows the door to evaluate the command that was given to it.

 Listing 2.3 shows a simple script that parses strings.

 Listing 2.3: String Parsing (StringParse.lsl)

 string text;

string pop()
{
 string result;
 integer i = llSubStringIndex(text, " ");

 if(i!=-1)
 {
 i -=1;
 result = llGetSubString(text,0,i);
 text = llGetSubString(text,i+2,-1);
 return result;
 }
 else
 {

Scripting Recipes for Second Life62

 result = text;
 text = "";
 }

 text = llStringTrim(text, STRING_TRIM);
 result = llStringTrim(result, STRING_TRIM);

 return result;
}

default
{
 state_entry()
 {
 text = "Now is the time for all good men to come to the
aid of their country.";
 string str;

 while((str=pop())!="")
 {
 llSay(0,str);
 }
 }
}

 This recipe takes a string, such as “Testing one two three”, and then provides a method
that breaks the string up by spaces. The previous string would become the following four
strings: “Testing”, “one”, “two”, and “three”.

 To do this, the global variable text , must be set to the string to be parsed. Then, each
time one element from text is needed, the pop function should be called. The pop function
returns the fi rst space delimited substring from the text variable and also removes what
was returned from the text variable.

 Implementing the pop Function

 The pop function accepts no parameters and returns a string. The returned string will
be the next string parsed from the text variable.

 string pop()
{

 This function begins by searching for the fi rst occurrence of the space character.

 string result;
 integer i = llSubStringIndex(text, " ");

63Chapter 2: String Handling

 If a space is found, extract the data from the text variable up to where the space was
found. Also remove this string from the text variable.

 if(i!=-1)
 {
 i -=1;
 result = llGetSubString(text,0,i);
 text = llGetSubString(text,i+2,-1);
 return result;
 }

 If no spaces are found, return the remaining characters in the text variable. The
 text variable is also set to an empty string, since there are no additional characters to
parse.

 else
 {
 result = text;
 text = "";
 }

 Trim extra spaces from both the remaining text and the string just extracted.

 text = llStringTrim(text, STRING_TRIM);
 result = llStringTrim(result, STRING_TRIM);

 return result;
}

 Finally, the result variable is returned.

 Testing String Parsing

 The script includes a simple state_entry function that tests the functions presented
in this recipe. This demonstrates how the pop function behaves when passed a sentence.

 default
{
 state_entry()
 {
 text = "Now is the time for all good men to come to the
aid of their country.";
 string str;

 while((str=pop())!="")
 {
 llSay(0,str);
 }
 }

Scripting Recipes for Second Life64

}

 The results from parsing the above sentence are:

 [3:22] Object: Now
[3:22] Object: is
[3:22] Object: the
[3:22] Object: time
[3:22] Object: for
[3:22] Object: all
[3:22] Object: good
[3:22] Object: men
[3:22] Object: to
[3:22] Object: come
[3:22] Object: to
[3:22] Object: the
[3:22] Object: aid
[3:22] Object: of
[3:22] Object: their
[3:22] Object: country.

 This recipe shows how to break up a string by spaces. It could also be eas-
ily modifi ed to parse a string in other ways. This is very similar to the built in function
 llParseString2List , except that the pop function does not require that every
string be delimited by the space. At any point, the remaining text can be accessed by using
the text value. For example “door add Encog Dod”, the parsing could stop after add and
“Encog Dod” remains in the text string. If llParseString2List were used “En-
cog Dod” would have been split into two strings: “Encog” and “Dod”. If this functionality is
not required, the llParseString2List function should be used.

 Summary
 This chapter showed how to parse and compare strings. Second Life scripts often receive

data directly from users as they type. The functions presented in this chapter help scripts to
make sense of this data. The functions in this chapter are of little use alone. These functions
will usually be incorporated into larger scripts.

 Functions were provided that determined set membership of strings. The isNumeric
function allows a script to determine whether a string only contains numeric values. The
 isAlpha function allows a script to determine whether a string only contains alphabet-
ic characters. The isAlphanumeric function allows a script to determine whether a
string is alphanumeric.

 Chapters one and two presented scripts that speak to the user. The scripts presented so
far do not directly interact with the Second Life world. Chapter three will introduce scripts
that directly interact with the Second Life world. The recipes in Chapter 3 show how to create
building components. This includes items such as doors and elevators.

65Chapter 2: String Handling

Scripting Recipes for Second Life66

67Chapter 3: Components for Buildings

 CHAPTER 3: COMPONENTS FOR BUILDINGS

 • Creating Splashing Water
 • Creating an Open Door
 • Creating an Owner-Locked Door
 • Creating a Smart Door
 • Creating a Teleport Pad
 • Creating an Elevator

 Buildings are very common in Second Life. As an avatar fl ies over the Second Life world,
they encounter many different buildings. Scripts have their place in buildings. Scripts pro-
vide doors and other building elements. Lockable doors control access to buildings.

 Multi-fl oor buildings need a way to quickly take the user from one fl oor to another. El-
evators are a common solution. Elevators work similarly to real-world elevators. However,
elevators and stairs take up valuable space inside a building. Many buildings in Second Life
use teleport pads. A teleport pad transports the user to a specifi ed location.

 This chapter presents several Recipes for scripts that are common either in or around
buildings. The fi rst Recipe shows how to create water that splashes when an avatar enters
it.

 Recipe 3.1: Splashing Water
 The Second Life world includes water. However, all water in Second Life is at exactly the

same level. Water is usually at 20 meters on the z-coordinate. However, this is not always the
case, as private islands can set the water height to any level desired. Second life water can
be seen in Figure 3.1.

Scripting Recipes for Second Life68

 Figure 3.1: Beach Front Land in Second Life

 Sometimes water is needed at a higher altitude than “sea level”. A good example of this
is a swimming pool. A swimming pool could be above sea level if it occurs inland. To give
the swimming pool the effect of water, a phantom rectangle is created with a water texture. A
small swimming pool can be seen in Figure 3.2.

69Chapter 3: Components for Buildings

 Figure 3.2: Swimming Pool

 However, the water in the swimming pool is fairly boring without a script. A script allows
the water to “fl ow” and also produce a “splash” sound when an avatar enters the water. List-
ing 3.1 shows the script used for water.

 Listing 3.1: Splashing Water (Splash.lsl)

 default
{
 state_entry()
 {
 llSetTextureAnim(ANIM_ON | ROTATE | LOOP
 | SMOOTH, ALL_SIDES, 0, 0, 0, 100, .05);
 llVolumeDetect(TRUE);
 }

 collision_start(integer num_detected)
 {
 llTriggerSound("splash", 1);
 }

}

Scripting Recipes for Second Life70

 The state_entry function sets up both the fl ow of the water and the splash sound
effect. First, a texture animation is created. Texture animations are created once by calling
 llSetTextureAnim . Once the texture animation is started, it continues with no fur-
ther interaction required from the script. The texture animation for the water is started with
the following command:

 llSetTextureAnim(ANIM_ON | ROTATE | LOOP
 | SMOOTH, ALL_SIDES, 0, 0, 0, 100, .05);

 The above function call rotates the texture every 0.05 frames. This causes the water to
slowly rotate. Next, a call to llVolumeDetect instructs Second Life to call the collision
event handlers whenever an avatar comes into contact with the object. The following func-
tion call does this.

 llVolumeDetect(TRUE);

 Whenever the collision_start event handler is called, the “splash” sound
should be played. The following lines do this.

 collision_start(integer num_detected)
{
 llTriggerSound("splash", 1);
}

 The llTriggerSound plays the sound “splash” at the maximum volume of one.
The sound must be stored in the object's inventory.

 Recipe 3.2: Open Door
 Doors are very common in the Second Life world. Most doors open as soon as an avatar

touches them. Some doors only open for specifi c users. Many doors open for any avatar.

 A door in Second Life usually opens by rotating the door's object by 90 degrees. This
means a simple fl at cube is insuffi cient for a door. This is because objects in Second Life are
always rotated about their center. Think about a door in real life. Does the door rotate about
its center when opened? No. A door rotates about its hinges when it opens. The hinges
are on the side. Because of this, a door in Second Life is normally a cube with a cut path to
remove one side of the rectangle. This causes the center of the door to appear to be on its
side.

 To create such a door, create a rectangular cube and set a cut path begin of 0.375 and
a cut path end of 0.875. Additionally, set the texture's repeats per face horizontal to 2, and
the horizontal texture offset to 0.5. All other values can remain at their default state. If the
sample objects are obtained from this book, a perfectly setup door object can be seen. Refer
to Appendix A on how to obtain sample objects and code for this book. Figure 3.3 shows a
door and the center point.

71Chapter 3: Components for Buildings

 Figure 3.3: Door with Center

 This Recipe shows how to create an open door that will open for any avatar. The script
for such a door is shown in Listing 3.2.

 Listing 3.2: Open Door (OpenDoor.lsl)

 float TIMER_CLOSE = 5.0;
integer DIRECTION = -1;
// direction door opens in. Either 1 (outwards) or -1 (inwards);

integer DOOR_OPEN = 1;
integer DOOR_CLOSE = 2;

vector originalPos;

door(integer what)
{
 rotation rot;
 rotation delta;
 vector eul;

 llSetTimerEvent(0);

Scripting Recipes for Second Life72

 if (what == DOOR_OPEN)
 {
 llTriggerSound("doorOpen", 1);
 eul = <0, 0, 90*DIRECTION>;
//90 degrees around the z-axis, in Euler form

 } else if (what == DOOR_CLOSE)
 {
 llTriggerSound("doorClose", 1);
 eul = <0, 0, 90*-DIRECTION>;
//90 degrees around the z-axis, in Euler form
 }

 eul *= DEG_TO_RAD; //convert to radians rotation
 rot = llGetRot();
 delta = llEuler2Rot(eul);
 rot = delta * rot;
 llSetRot(rot);
}

default
{
 on_rez(integer start_param)
 {
 llResetScript();
 }

 state_entry()
 {
 originalPos = llGetPos();
 }

 touch_start(integer total_number)
 {
 door(DOOR_OPEN);
 state open_state;

 }

 moving_end()
 {
 originalPos = llGetPos();
 }
}

73Chapter 3: Components for Buildings

state open_state
{
 state_entry()
 {
 llSetTimerEvent(TIMER_CLOSE);
 }

 touch_start(integer num)
 {
 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state default;
 }

 timer()
 {
 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state default;
 }

 moving_start()
 {
 door(DOOR_CLOSE);
 state default;
 }
}

 The door script begins by defi ning a number of variables. The TIMER_CLOSE vari-
able defi nes how long until the door swings closed. The DIRECTION variable specifi es DIRECTION variable specifi es DIRECTION
the direction the door opens, either 1 (outwards) or -1 (inwards). The DOOR_OPEN and DOOR_OPEN and DOOR_OPEN
 DOOR_CLOSE variables are used as constants to tell the door function what state the
door should move to. The originalPos variable holds the original position of the door.
This is useful because sometimes the door will slightly change positions when opening or
closing. Doors are particularly prone to changing positions when they hit something in the
process of opening or closing. These variables can be seen here.

 float TIMER_CLOSE = 5.0;
integer DIRECTION = -1;
integer DOOR_OPEN = 1;
integer DOOR_CLOSE = 2;
vector originalPos;

 The door script defi nes one global function, named door . This function should be
passed either DOOR_OPEN or DOOR_OPEN or DOOR_OPEN DOOR_CLOSE for its single parameter. The door func-
tion begins by creating a few variables that will be needed as the door is rotated.

Scripting Recipes for Second Life74

 door(integer what)
{
 rotation rot;
 rotation delta;
 vector eul;

 llSetTimerEvent(0);

 Next, the open state is handled. The door is rotated by 90 degrees. To do this, a
 vector is created that specifi es a rotation of zero in both the x and y coordinate system,
but a value of -90 or +90 in the z-coordinate. Additionally, the door open sound is played.

 if (what == DOOR_OPEN)
 {
 llTriggerSound("doorOpen", 1);
 eul = <0, 0, 90*DIRECTION>;

 Next, the close state is handled. The door is rotated by 90 degrees. To do this, a
 vector is created that specifi es a rotation of zero in both the x and y coordinate system,
but a value of -90 or +90 in the z-coordinate. The opposite direction of the open state is
specifi ed. Additionally, the door open sound is played.

 } else if (what == DOOR_CLOSE)
 {
 llTriggerSound("doorClose", 1);
 eul = <0, 0, 90*-DIRECTION>;
 }

 Second Life expresses rotations not in degrees or radians but in a form called a qua-
ternion. This is a four component rotation that has x, y, z and s components. Most scripts
do not deal with quaternions directly, but rather convert radians into quaternions using the
 llEuler2Rot function.

 This can seen before the eul variable is converted into radians. Next, the current
rotation is obtained by calling llGetRot . The change in rotation, called delta, is ob-
tained by converting the radians into a quaternion rotation. This is done by calling the
 llEuler2Rot function.

 eul *= DEG_TO_RAD; //convert to radians rotation
 rot = llGetRot();
 delta = llEuler2Rot(eul);
 rot = delta * rot;
 llSetRot(rot);
}

 The above code is very common in Second Life scripts that need to deal with angles.

75Chapter 3: Components for Buildings

 Next, the two states for the door must be handled. The default state is when the
door is closed. The open_state state, as its name implies, handles the state where
the door is opened. The door begins in the default closed state. The door includes an
 on_rez event that resets the script. This ensures that the script is properly setup if it is
sold or transferred. For the simple open door this is not really necessary, since the open door
does not care about its owner. However, for objects that operate differently for their owner, a
call to llResetScript should always be set in the on_rez event handler.

 default
{
 on_rez(integer start_param)
 {
 llResetScript();
 }

 state_entry()
 {
 originalPos = llGetPos();
 }

 When the door is touched, and it is in the closed state, open the door and switch to
the open_state .

 touch_start(integer total_number)
 {
 door(DOOR_OPEN);
 state open_state;
 }

 If the user moves the door, grab a new copy of originalPos .

 moving_end()
 {
 originalPos = llGetPos();
 }
}

 The open state begins by setting a timer. This door will close automatically after the time
specifi ed by TIMER_CLOSE elapses. If the user touches the closed door before the timer
is up, immediately close and return to the default state.

 state open_state
{
 state_entry()
 {
 llSetTimerEvent(TIMER_CLOSE);
 }

Scripting Recipes for Second Life76

 touch_start(integer num)
 {
 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state default;
 }

 Once the timer event occurs, return the door to a closed state and set the position
back to the original position. Return to the default state.

 timer()
 {
 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state default;
 }

 If the user begins to move the door, close the door and return to the default
state.

 moving_start()
 {
 door(DOOR_CLOSE);
 state default;
 }
}

 This script implements a basic unlocked door. The next two Recipes demonstrate two
different types of locking doors.

 Recipe 3.3: Owner Locked Door
 It is easy enough to create a simple locking door. The door presented in this Recipe will

only open for its owner. Of course, in Second Life, locked doors are not totally secure. There
are ways to get around them, due to limitations in the Second Life client program.

 The easiest way to step around a locked door is to position the avatar right against it.
Then press the cursor left or cursor right and rotate the avatar. When the correct angle re-
veals the inside of the building, fi nd something to sit on and select it. The avatar will now be
inside of the building!

 Despite these limitations, locked doors are still popular in Second Life. They keep casual
or inexperienced users out. However, if a user is really determined to enter, they will be able
to. The only way to keep a user out is to use the land tools and setup access controls. To do
this, right click on the land and choose about. Then, under the access tab specify who may
access this land.

 The owner locked door is presented in Listing 3.3.

77Chapter 3: Components for Buildings

 Listing 3.3: Owner Locked Door (OwnerLockedDoor.lsl)

 float TIMER_CLOSE = 5.0;
integer DIRECTION = -1;
// direction door opens in. Either 1 (outwards) or -1 (inwards);

integer DOOR_OPEN = 1;
integer DOOR_CLOSE = 2;

vector originalPos;

door(integer what)
{
 rotation rot;
 rotation delta;
 vector eul;

 llSetTimerEvent(0);

 if (what == DOOR_OPEN)
 {
 llTriggerSound("doorOpen", 1);
 eul = <0, 0, 90*DIRECTION>;
//90 degrees around the z-axis, in Euler form

 } else if (what == DOOR_CLOSE)
 {
 llTriggerSound("doorClose", 1);
 eul = <0, 0, 90*-DIRECTION>;
//90 degrees around the z-axis, in Euler form
 }

 eul *= DEG_TO_RAD; //convert to radians rotation
 rot = llGetRot();
 delta = llEuler2Rot(eul);
 rot = delta * rot;
 llSetRot(rot);
}

default
{
 on_rez(integer start_param)
 {
 llResetScript();
 }

Scripting Recipes for Second Life78

 state_entry()
 {
 originalPos = llGetPos();
 }

 touch_start(integer total_number)
 {
 key who = llDetectedKey(0);
 if(who==llGetOwner())
 {
 llSay(0,"Hello " + llDetectedName(0));
 door(DOOR_OPEN);
 state open_state;
 }
 else
 {
 llSay(0,llDetectedName(0) + " is at the door.");
 llTriggerSound("doorbell", 0.8);
 }
 }

 moving_end()
 {
 originalPos = llGetPos();
 }
}

state open_state
{
 state_entry()
 {
 llSetTimerEvent(TIMER_CLOSE);
 }

 touch_start(integer num)
 {
 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state default;
 }

 timer()
 {
 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state default;
 }

79Chapter 3: Components for Buildings

 moving_start()
 {
 door(DOOR_CLOSE);
 state default;
 }
}

 A good part of this Recipe is the same as Recipe 3.2. Because of this, only the new code
will be explained. This Recipe only explains the security aspects of the door. For a discussion
on how the door opens, refer to Recipe 3.2.

 All security for the owner-locked door is implemented inside the touch_start
event handler. The fi rst thing that the touch_start event handler does is to obtain
the key to the avatar that touched the door. This key must match the owner of the door.
The owner is obtained by calling llGetOwner and the touching user is obtained by call-
ing llDetectedKey . If the owner is the one who touched the door, begin the opening
procedure.

 touch_start(integer total_number)
{
 key who = llDetectedKey(0);
 if(who==llGetOwner())
 {
 llSay(0,"Hello " + llDetectedName(0));
 door(DOOR_OPEN);
 state open_state;
 }

 If the owner is not the one opening the door, play a doorbell sound and say who is at the
door.

 else
 {
 llSay(0,llDetectedName(0) + " is at the door.");
 llTriggerSound("doorbell", 0.8);
 }
}

 This door can only be opened by one person. To create a door that opens with a larger
number of people, refer to the next Recipe.

 Recipe 3.4: Multi-User Lockable Door
 In the real world, a door rarely has only one key. Rather, a key will be given to each per-

son trusted to open the door. This Recipe implements a door that can be opened by multiple
users. The door starts being able only to be opened by the owner. However, the owner can
grant access to additional users.

Scripting Recipes for Second Life80

 To add users to the door, say “door” followed by one of the commands. The door under-
stands the following commands:

 • door
 • door add [user name]
 • door list
 • door clear

 The “door” command displays the name of the door. The “door add” command adds the
specifi ed user to the access list. The “door list” shows all those who can access the door. The
“door clear” command clears the list so that only the owner can open the door. The owner
can always open the door, and is not on the list.

 The following is a sample illustration of a conversation with the door.

 [15:16] You: door
[15:16] Smart Door: I am the smart door!
[15:16] You: door add Mandy Nakamura
[15:16] Smart Door: Adding MANDY NAKAMURA
[15:16] You: door add Aught Oh
[15:16] Smart Door: Adding AUGHT OH
[15:16] You: door list
[15:16] Smart Door: The following people have access to open me:
[15:16] Smart Door: MANDY NAKAMURA
[15:16] Smart Door: AUGHT OH

 This “smart door” is shown in Listing 3.4.

 Listing 3.4: Multi-User Lockable Door (SmartDoor.lsl)

 float TIMER_CLOSE = 5.0;
integer DIRECTION = -1;
// direction door opens in. Either 1 (outwards) or -1 (inwards);

integer DOOR_OPEN = 1;
integer DOOR_CLOSE = 2;

vector originalPos;
string text;
list allow;

door(integer what)
{
 rotation rot;
 rotation delta;
 vector eul;

 llSetTimerEvent(0);

81Chapter 3: Components for Buildings

 if (what == DOOR_OPEN)
 {
 llTriggerSound("doorOpen", 1);
 eul = <0, 0, 90*DIRECTION>;
//90 degrees around the z-axis, in Euler form

 } else if (what == DOOR_CLOSE)
 {
 llTriggerSound("doorClose", 1);
 eul = <0, 0, 90*-DIRECTION>;
//90 degrees around the z-axis, in Euler form
 }

 eul *= DEG_TO_RAD;
//convert to radians rotation
 rot = llGetRot();
 delta = llEuler2Rot(eul);
 rot = delta * rot;
 llSetRot(rot);
}

string pop()
{
 string result;
 integer i = llSubStringIndex(text, " ");

 if(i!=-1)
 {
 i -=1;
 result = llGetSubString(text,0,i);
 text = llGetSubString(text,i+2,-1);
 return result;
 }
 else
 {
 result = text;
 text = "";
 }

 text = llStringTrim(text, STRING_TRIM);
 result = llStringTrim(result, STRING_TRIM);

 return result;
}

Scripting Recipes for Second Life82

default
{
 on_rez(integer start_param)
 {
 llResetScript();
 }

 state_entry()
 {
 originalPos = llGetPos();
 llListen(0, "", NULL_KEY, "");
 }

 touch_start(integer total_number)
 {
 key who = llDetectedKey(0);
 integer shouldOpen = 0;

 if(who==llGetOwner())
 shouldOpen = 1;

 string name = llToUpper(llDetectedName(0));
 if(llListFindList(allow,[name]) != -1)
 shouldOpen = 1;

 if(shouldOpen == 1)
 {
 llSay(0,"Hello " + llDetectedName(0));
 door(DOOR_OPEN);
 state open_state;
 }
 else
 {
 llSay(0,llDetectedName(0) + " is at the door.");
 llTriggerSound("doorbell", 0.8);
 }
 }

 moving_end()
 {
 originalPos = llGetPos();
 }

 listen(integer channel, string name, key id, string message)
 {
 if(id==llGetOwner())

83Chapter 3: Components for Buildings

 {

 text = message;
 string prefix = llToLower(pop());

 if(prefix=="door")
 {
 string command = pop();
 if(command=="")
 {
 llSay(0,"I am the smart door!");
 }
 else if(command=="clear")
 {
 llSay(0,"Clearing access list.");
 allow = [];
 }
 else if(command=="add")
 {
 if(llStringLength(text)> 0)
 {
 text = llToUpper(text);
 allow+=[text];
 llSay(0,"Adding " + text);
 }
 else
 {
 llSay(0,
"You must also specify an avatar when using add.");
 }
 }
 else if(command=="list")
 {
 integer length = llGetListLength(allow);
 if(length==0)
 {
 llSay(0,
"No one, other than my owner, may open me.");
 }
 else
 {
 integer i;
 llSay(0,
"The following people have access to open me:");

Scripting Recipes for Second Life84

 for (i = 0; i < length; ++i)
 {
 llSay(0,llList2String(allow, i));
 }
 }
 }
 else
 {
 llSay(0,"I did not understand that command,
say \"door\" for a list of commands.");
 }
 }
 }

 }
}

state open_state
{
 state_entry()
 {
 llSetTimerEvent(TIMER_CLOSE);
 }

 touch_start(integer num)
 {
 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state default;
 }

 timer()
 {
 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state default;
 }

 moving_start()
 {
 door(DOOR_CLOSE);
 state default;
 }
}

 The next few sections explain how the smart door was implemented, starting with the
variables needed for the door.

85Chapter 3: Components for Buildings

 Variables Needed for the Door
 Several variables are defi ned for the smart door. Some of the variables are the same as

were used for the open door shown in Recipe 3.2. The new variable is shown here.

 list allow;

 The allow variable keeps a list of who is allowed to open the door. This Recipe only allow variable keeps a list of who is allowed to open the door. This Recipe only allow
describes what was added to Recipe 3.2 to create the smart door. This includes the security
features, but not the mechanics of how to open the door. For more information on the me-
chanics of opening the door, refer to Recipe 3.2.

 The functionality for this Recipe is split among two event handlers. The touch_start
event handler allows the door to be opened by touching it. The listen event handler al-
lows the owner of the door to add users to the list of people who are allowed to open the
door.

 Controlling Access to the Door

 All of the door security is handled by the touch_start event handler. First, the
 start_touch event handler checks to see who touched the door. If the owner of the
door touched the door, the door should always be opened.

 touch_start(integer total_number)
{
 key who = llDetectedKey(0);
 integer shouldOpen = 0;

 if(who==llGetOwner())
 shouldOpen = 1;

 Next, the name of the touching user is converted to be entirely upper case. The list of
allowed users is checked. If the user is found, the door will be opened. A Linden Scripting
Language list can easily be searched by calling llListFindList .

 string name = llToUpper(llDetectedName(0));
 if(llListFindList(allow,[name]) != -1)
 shouldOpen = 1;

 If it has been determined that the door should be opened, the door says hello to the
touching user. The door then opens.

 if(shouldOpen == 1)
 {
 llSay(0,"Hello " + llDetectedName(0));
 door(DOOR_OPEN);
 state open_state;
 }

Scripting Recipes for Second Life86

 If the door should not be opened, play a doorbell sound and say who is at the door.

 else
 {
 llSay(0,llDetectedName(0) + " is at the door.");
 llTriggerSound("doorbell", 0.8);
 }
}

 To determine whether users should be allowed or not, the touch_start event han-
dler requires that all authorized users be added to the list. Users are added to the list by
talking to the door. This is covered in the next section.

 Listening for Commands

 The listen event handler uses the pop function that was introduced in Recipe
2.3. For more information about how the pop function works, refer to Recipe 2.3. The pop
function is used to break open the commands to the door.

 The listen event handler begins by making sure that the one talking to it is the owner
of the object. If the one talking is not the owner, the conversation is ignored.

 listen(integer channel, string name, key id, string message)
{
 if(id==llGetOwner())
 {
 text = message;
 string prefix = llToLower(pop());

 The fi rst space delimited word is extracted from what was said to the door. This string
is converted into lower case. The script checks to see whether this word was door. Since all
the commands to the door start with the word “door”, if the prefi x is not door, the door will
do nothing further.

 if(prefix=="door")
 {

 Once it has been established that what the owner said is prefi xed by door, the next space
delimited word is the command. The command is obtained. If there is no command, the
door simply identifi es itself.

 string command = pop();
 if(command=="")
 {
 llSay(0,"I am the smart door!");
 }

 If the command is clear, the list is set to an empty array, which clears it.

 else if(command=="clear")

87Chapter 3: Components for Buildings

 {
 llSay(0,"Clearing access list.");
 allow = [];
 }

 If the command is add, the door obtains the rest of the text and adds that user. It is im-
portant to not use pop at this point. User names in Second Life are a fi rst name, a space and
the last name. If pop is used, only the fi rst name would be obtained.

 else if(command=="add")
 {
 if(llStringLength(text)> 0)
 {
 text = llToUpper(text);
 allow+=[text];
 llSay(0,"Adding " + text);
 }

 If no user is specifi ed, display an error.

 else
 {
llSay(0,"You must also specify an avatar when using add.");
 }
 }

 If the command list is given, the length of the list is obtained. If the list has a length equal
to zero, the door reports that it can only opened by its owner.

 else if(command=="list")
 {
 integer length = llGetListLength(allow);
 if(length==0)
 {
llSay(0,"No one, other than my owner, may open me.");
 }

 Otherwise, a for loop is used to display the entire list of allowed users.

 else
 {
 integer i;
llSay(0,"The following people have access to open me:");
 for (i = 0; i < length; ++i)
 {
 llSay(0,llList2String(allow, i));
 }
 }
 }

Scripting Recipes for Second Life88

 If the command does not match any of the previous values, the door states that it did not
understand the command.

 else
 {
llSay(0,"I did not understand that command.");
 }
 }
 }
}

 The rest of the door recipe is the same as Recipe 3.2. To see the mechanics of opening
and closing the door, Refer to Recipe 3.2.

 Recipe 3.5: Teleport Pad
 Buildings in Second Life often have more than one level. There are three common meth-

ods for allowing users to move from one level to another, they are:

 • Stairs or Ramps
 • Elevators
 • Teleport Pads

 Stairs and ramps do not require any scripting. The user walks up them. Elevators and
teleport pads require scripting. This chapter provides a recipe for each.

 This recipe provides a simple teleport pad. A teleport pad is more fl exible than an eleva-
tor. The teleport pad can send the user to a specifi c point, within 300 meters, in the same
region. The teleport pad recipe is shown in Listing 3.5.

 Listing 3.5: Teleport Pad (Teleport.lsl)

 vector target=<190, 197, 64>;

vector offset;

default
{
 moving_end()
 {
 offset = (target- llGetPos()) * (ZERO_ROTATION /
 llGetRot());
 llSitTarget(offset, ZERO_ROTATION);
 }

 state_entry()
 {
 llSetText("Teleport pad",<0,0,0>,1.0);

89Chapter 3: Components for Buildings

 offset = (target- llGetPos()) *
 (ZERO_ROTATION / llGetRot());
 llSetSitText("Teleport");
 llSitTarget(offset, ZERO_ROTATION);
 }

 changed(integer change)
 {
 if (change & CHANGED_LINK)
 {
 llSleep(0.5);
 if (llAvatarOnSitTarget() != NULL_KEY)
 {
 llUnSit(llAvatarOnSitTarget());
 }
 }
 }

 touch_start(integer i)
 {
 llSay(0, "Please right-click and select Teleport");
 }
}

 The teleport script uses two global variables. They are.

 vector target=<190, 197, 64>;
vector offset;

 The target is the coordinate that the teleport script should send the user to. The
 offset is calculated based on the target and the current position of the teleporter. The
 offset is the distance that must be traveled to reach the target, starting from the tele-
porter.

 Whenever the teleport pad is moved, the offset must be recalculated. The sit target
is then updated.

 moving_end()
{
 offset = (target- llGetPos()) *
 (ZERO_ROTATION / llGetRot());
 llSitTarget(offset, ZERO_ROTATION);
}

 Likewise, when the teleport pad is fi rst created, the offset must be recalculated. Addition-
ally, the sit text is specifi ed. Rotation is also taken into account and neutralized.

Scripting Recipes for Second Life90

 state_entry()
{
 llSetText("Teleport pad",<0,0,0>,1.0);
 offset = (target- llGetPos()) *
 (ZERO_ROTATION / llGetRot());
 llSetSitText("Teleport");
 llSitTarget(offset, ZERO_ROTATION);
}

 When a user sits on the teleport pad, their avatar sits at the target location. The avatar
is then stood up.

 changed(integer change)
{
 if (change & CHANGED_LINK)
 {
 llSleep(0.5);
 if (llAvatarOnSitTarget() != NULL_KEY)
 {
 llUnSit(llAvatarOnSitTarget());
 }
 }
}

 The teleport pad is a form of Linden Scripting Language trick. By specifying a distant co-
ordinate for the sit target, the avatar is moved to that distant location and then stood up. This
instantaneously moves the avatar to the new location. The avatar is able to move through
walls and anything else that is in the way.

 Recipe 3.6: Elevator
 Elevators are a common mode of transportation in the Second Life world. The Heaton

Research offi ce building, where many of the examples from this book can be found, includes
an elevator. It is the same elevator that will be covered in this recipe. The elevator in the
Heaton Research Tower can be found at:

 http://slurl.com/secondlife/Encogia/197/197/23

 The above SLURL leads to the lobby of the Heaton Research tower. The elevator is locat-
ed there. If the elevator is not present, click the green cone to call the elevator. Figure 3.4.

91Chapter 3: Components for Buildings

 Figure 3.4: An Elevator

 The elevator consists of two objects:

 • The Elevator Car
 • Elevator Call Cone

 Each of these objects contains its own script and serves its own function.

 The Elevator Car

 The elevator car is the heart of the elevator system. It is also has the most complex script
of any of the elevator parts. The elevator car can be seen in Figure 3.4. The script for the
elevator car is shown in Listing 3.6.

 Listing 3.6: Elevator Car (Elevator.lsl)

 integer CHANNEL = 42; // dialog channel
list MENU_MAIN = ["Floor 1", "Floor 2", "Floor 3", "Floor 4",
"Floor 5", "Floor 6", "Floor 7", "Floor 8", "Floor 9", "Floor
10","Roof"]; // the main menu

float BOTTOM = 22.260;
float FLOOR_HEIGHT = 10;

Scripting Recipes for Second Life92

float SPEED = 2;
float target;

default
{
 state_entry()
 {
 llListen(CHANNEL, "", NULL_KEY, ""); // listen for dialog
answers (from multiple users)
 llSitTarget(<0,-0.5,0.5>, llEuler2Rot(<0,0,-90>));
 llSetText("Sit Here to Ride Elevator",<0,0,0>,1.0);
 target = BOTTOM;
 }

 listen(integer channel, string name, key id, string message)
 {
 integer idx = llListFindList(MENU_MAIN, [message]);
 if(idx!=-1)
 {
 llSay(0,"Elevator heading to " + message + ".");
 target = BOTTOM + (idx*10);
 state moving;
 }
 }

 changed(integer Change)
 {
 llDialog(llAvatarOnSitTarget(), "Where to?", MENU_MAIN,
CHANNEL);
 }

}

state moving
{

 state_entry()
 {
 llSetTimerEvent(0.1);
 }

 timer()
 {
 vector pos = llGetPos();

93Chapter 3: Components for Buildings

 if(pos.z!=target)
 {
 if(pos.z>target)
 {
 pos.z = pos.z - SPEED;
 }
 else
 {
 pos.z = pos.z + SPEED;
 }
 }

 if(llFabs(pos.z - target) < SPEED)
 {
 pos.z = target;
 llSetTimerEvent(0);
 llSetPos(pos);
 llSay(0,"Elevator has reached its target.");
 state default;
 }

 llSetPos(pos);

 }
}

 The elevator car begins by defi ning several global variables. These are.

 integer CHANNEL = 42; // dialog channel
list MENU_MAIN = ["Floor 1", "Floor 2", "Floor 3", "Floor 4",
"Floor 5", "Floor 6", "Floor 7", "Floor 8", "Floor 9", "Floor
10","Roof"]; // the main menu
float BOTTOM = 22.260;
float FLOOR_HEIGHT = 10;
float SPEED = 2;
float target;

 The fi rst is the CHANNEL . The elevator needs its target fl oor communicated to
it. This will be communicated using either a menu or one of the elevator call cones. The
 MAIN_MENU defi nes the labels for each of the fl oors. The BOTTOM variable defi nes the BOTTOM variable defi nes the BOTTOM
height of the ground fl oor. The FLOOR_HEIGHT variable defi nes the height of each of
the fl oors in meters. The SPEED defi nes how fast the elevator travels, lower is slower. The
target variable holds the target z-coordinate, in meters, when the elevator is in motion.

Scripting Recipes for Second Life94

 The default state of the elevator is to be still. After the default state is entered,
the elevator sets up. It defi nes the sit target, as well as the sit text. The elevator also begins
listening for commands.

 default
{
 state_entry()
 {
 llListen(CHANNEL, "", NULL_KEY, "");
 // listen for dialog answers (from multiple users)
 llSitTarget(<0,-0.5,0.5>, llEuler2Rot(<0,0,-90>));
 llSetText("Sit Here to Ride Elevator",<0,0,0>,1.0);
 target = BOTTOM;
 }

 The listen event handler allows the elevator to receive commands from both the
elevator's menu and the elevator call cones placed on each of the fl oors. The listen event
handler begins by fi nding the index of the string sent to it. This tells the elevator which fl oor
to visit. The elevator then announces which fl oor it is heading to and enters the moving
state.

 listen(integer channel, string name, key id, string message)
 {
 integer idx = llListFindList(MENU_MAIN, [message]);
 if(idx!=-1)
 {
 llSay(0,"Elevator heading to " + message + ".");
 target = BOTTOM + (idx*10);
 state moving;
 }
 }

 When an avatar sits on the elevator car, a dialog is displayed to prompt for which fl oor
to visit. This will be a list of fl oors specifi ed in the MAIN_MENU variable. When the user
picks one of these options, the text of that option is sent to the elevator car's listen event
handler.

 changed(integer Change)
 {
 llDialog(llAvatarOnSitTarget(), "Where to?",
 MENU_MAIN, CHANNEL);
 }
}

 Once the elevator enters the moving state, a timer is created that will occur ten times a
second.

 state moving
{

95Chapter 3: Components for Buildings

 state_entry()
 {
 llSetTimerEvent(0.1);
 }

 Each time the timer event handler is called, the elevator moves closer to its target.
The timer event handler begins by obtaining the current position of the elevator.

 timer()
 {
 vector pos = llGetPos();

 If the elevator is not at its target, the current z-coordinate will be increased or decreased,
depending on which is necessary to move the elevator closer to its target.

 if(pos.z!=target)
 {
 if(pos.z>target)
 {
 pos.z = pos.z - SPEED;
 }
 else
 {
 pos.z = pos.z + SPEED;
 }
 }

 If the elevator is reasonably close to its target, move the elevator directly to its target.
The timer is then stopped and the elevator returns to its default state.

 if(llFabs(pos.z - target) < SPEED)
 {
 pos.z = target;
 llSetTimerEvent(0);
 llSetPos(pos);
 llSay(0,"Elevator has reached its target.");
 state default;
 }

 llSetPos(pos);

 }
}

 The elevator car is only part of the elevator system. An elevator call must be placed on
each of the fl oors to call the elevator to that fl oor.

Scripting Recipes for Second Life96

 Calling the Elevator

 One of the elevator call cones is present in Figure 3.4. It is the green cone. Once clicked,
it will call the elevator to the specifi ed fl oor. The call elevator script is very simple. Once
clicked, it calls the elevator to the fl oor specifi ed in its script. The call elevator script can be
seen in Listing 3.7.

 Listing 3.7: Call Elevator (Call.lsl)

 integer CHANNEL = 42; // dialog channel

default
{
 state_entry()
 {
 llSetText("Touch to Call Elevator",<0,0,0>,1.0);
 }

 touch_start(integer total_number)
 {

 llRegionSay(42, "Floor 1");
 }
}

 Once the call elevator cone is clicked, the touch_start event handler announces
the target fl oor to the region on the same channel to which the elevator is listening.

 llRegionSay(42, "Floor 7");

 The llRegionSay has much more distance than llShout . Commands sent with
 llRegionSay can be heard anywhere in the region. However, llRegion may say
not be used on the general chat channel (0). The shout command sends the command to the
elevator car.

 Summary
 Buildings are very common structures in Second Life. The vast majority of a building is

usually non-scripted objects. However, some aspects of buildings require scripts. This chap-
ter introduced several recipes that provide commonly used scripts for buildings.

 Sometimes water is needed in locations other than the ocean. Second Life provides
ocean water for any area below a specifi c altitude. However, to get water at other altitudes,
that water must be built. The fi rst recipe in this chapter showed how to build water. The
script showed how to make a splash sound when an avatar enters the water. The recipe also
showed how to animate the texture and make it appear that the water was fl owing.

97Chapter 3: Components for Buildings

 Doors are a very common part of buildings in Second Life. This chapter presented three
recipes for doors. The fi rst door recipe was a simple door that can be opened by any avatar.
The second door could only be opened by its owner. The third door could be opened by its
owner or any avatar that the owner adds to its access list.

 Many buildings in Second Life contain more than one fl oor. If the building contains more
than one fl oor, a means is required to move between fl oors. Common scriptless solutions
include stairs and ramps. Scripts can be used to implement elevators and teleport pads. This
chapter provides recipes for both.

 The next chapter will introduce the Second Life particle system. Particles are small ob-
jects that can be emitted from a scripted object. Common uses for particles include leaving
trails from vehicles, smoke, and allowing jewelry to glisten.

Scripting Recipes for Second Life98

99Chapter 4: Particle Effects

 CHAPTER 4: PARTICLE EFFECTS

 • Understanding the Basic Particle Emitter
 • Creating Chimney Smoke
 • Creating Jewelry Bling
 • Creating Explosions
 • Creating Falling Leafs

 Any prim in Second Life can emit particles. Particles are 2D sprites emitted from their
prim in defi nable ways. Particles are not objects in the sense that they can be touched or
count against the land's maximum object count. Particles are generated completely on the
client side, so they do not contribute to in-game lag.

 Particle emitters are used for a wide range of purposes in Second Life. Some of their
uses include:

 • Creating insects and leaves in landscaped areas
 • Creating fl ashy laser type effects in clubs
 • Leaving smoke and wave trails behind vehicles
 • Causing jewelry to sparkle
 • Smoke from chimneys
 • Creating explosions

 This chapter provides several recipes for particle emitters. The fi rst recipe shows a basic
particle emitter script.

 Recipe 4.1: Basic Particle Emitter
 The basic particle emitter script shown in this recipe emits red particles that fl oat up-

ward. The basic particle emitter is designed to be a starting point from which other particle
emitters can be created. Most of the particle emitters in this chapter used the basic particle
emitter as a starting point. The basic particle emitter can be seen in action in Figure 4.1.

Scripting Recipes for Second Life100

 Figure 4.1: Basic Particle Emitter

 The script for the basic particle emitter can be seen in Listing 4.1.

 Listing 4.1: Basic Particle Emitter (BasicParticle.lsl)

 generalParticleEmitterOn()
{
 llParticleSystem([
 PSYS_PART_FLAGS , 0
 //| PSYS_PART_BOUNCE_MASK
//Bounce on object's z-axis
 | PSYS_PART_WIND_MASK
//Particles are moved by wind
 | PSYS_PART_INTERP_COLOR_MASK
//Colors fade from start to end
 | PSYS_PART_INTERP_SCALE_MASK
//Scale fades from beginning to end
 | PSYS_PART_FOLLOW_SRC_MASK
//Particles follow the emitter
 | PSYS_PART_FOLLOW_VELOCITY_MASK
//Particles are created at the velocity of the emitter
 //| PSYS_PART_TARGET_POS_MASK //Particles follow the target

101Chapter 4: Particle Effects

 | PSYS_PART_EMISSIVE_MASK
//Particles are self-lit (glow)
 //| PSYS_PART_TARGET_LINEAR_MASK
//Undocumented--Sends particles in straight line?
 ,

 //PSYS_SRC_TARGET_KEY , NULL_KEY,
//The particles will head towards the specified key
 //Select one of the following for a pattern:
 //PSYS_SRC_PATTERN_DROP Particles start at
emitter with no velocity
 //PSYS_SRC_PATTERN_EXPLODE Particles explode from
the emitter
 //PSYS_SRC_PATTERN_ANGLE Particles are emitted
in a 2-D angle
 //PSYS_SRC_PATTERN_ANGLE_CONE Particles are emitted
in a 3-D cone
 //PSYS_SRC_PATTERN_ANGLE_CONE_EMPTY Particles are emitted
everywhere except for a 3-D cone

 PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_ANGLE_CONE

 ,PSYS_SRC_TEXTURE, ""
//UUID of the desired particle texture, or inventory name
 ,PSYS_SRC_MAX_AGE, 0.0
//Time, in seconds, for particles to be emitted. 0 = forever
 ,PSYS_PART_MAX_AGE, 4.0
//Lifetime, in seconds, that a particle lasts
 ,PSYS_SRC_BURST_RATE, 0.5
//How long, in seconds, between each emission
 ,PSYS_SRC_BURST_PART_COUNT, 6
//Number of particles per emission
 ,PSYS_SRC_BURST_RADIUS, 10.0
//Radius of emission
 ,PSYS_SRC_BURST_SPEED_MIN, .4
//Minimum speed of an emitted particle
 ,PSYS_SRC_BURST_SPEED_MAX, .5
//Maximum speed of an emitted particle
 ,PSYS_SRC_ACCEL, <0,0,1>
//Acceleration of particles each second
 ,PSYS_PART_START_COLOR, <1,0,0>
//Starting RGB color
 ,PSYS_PART_END_COLOR, <1,0,0>
//Ending RGB color, if INTERP_COLOR_MASK is on
 ,PSYS_PART_START_ALPHA, 1.0
//Starting transparency, 1 is opaque, 0 is transparent.

Scripting Recipes for Second Life102

 ,PSYS_PART_END_ALPHA, 1.0
//Ending transparency
 ,PSYS_PART_START_SCALE, <.25,.25,.25>
//Starting particle size
 ,PSYS_PART_END_SCALE, <1.5,1.5,1.5>
//Ending particle size, if INTERP_SCALE_MASK is on
 ,PSYS_SRC_ANGLE_BEGIN, 300 * DEG_TO_RAD
//Inner angle for ANGLE patterns
 ,PSYS_SRC_ANGLE_END, 60 * DEG_TO_RAD
//Outer angle for ANGLE patterns
 ,PSYS_SRC_OMEGA, <0.0,0.0,0.0>
//Rotation of ANGLE patterns, similar to llTargetOmega()
]);
}

generalParticleEmitterOff()
{
 llParticleSystem([]);
}

default
{
 state_entry()
 {
 generalParticleEmitterOn();
 }

 touch_start(integer num)
 {
 // uncomment the following line to allow this
 // effect to be turned off state off;
 }
}

state off
{
 state_entry()
 {
 generalParticleEmitterOff();
 }

 touch_start(integer num)
 {
 state default;
 }
}

103Chapter 4: Particle Effects

 Nearly all of the work of the basic particle emitter is performed by the call to
 llParticleSystem inside of the llParticleSystem inside of the llParticleSystem generalParticleEmitterOn function.

 Creating a Particle Emitter

 A particle emitter is created by passing a list to the llParticleSystem function. llParticleSystem function. llParticleSystem
This list is a series of name-value pairs. The majority of the code presented in Listing 4.1
creates this list.

 The fi rst name-value pair in the list is PSYS_PART_FLAGS . This defi nes a number
of fl ags that defi ne how the particles behave. These fl ags can be combined using the bit-wise
or operator(|). These fl ags are summarized in Table 4.1.

 Table 4.1: PSYS_PART_FLAGS Flags

Flag Purpose
PSYS_PART_BOUNCE_MASK Bounce on object's z-axis.
PSYS_PART_WIND_MASK Particles are moved by wind.
PSYS_PART_INTERP_COLOR_MASK Colors fade from start to end.
PSYS_PART_INTERP_SCALE_MASK Scale fades from beginning to end.
PSYS_PART_FOLLOW_SRC_MASK Particles follow the emitter.
PSYS_PART_FOLLOW_VELOCITY_MASK Particles are created at the velocity of

the emitter.
PSYS_PART_TARGET_POS_MASK Particles follow the target.
PSYS_PART_EMISSIVE_MASK Particles are self-lit (glow).
PSYS_PART_TARGET_LINEAR_MASK Undocumented fl ag.

A particle system should specify a pattern using the PSYS_SRC_PATTERN name- PSYS_SRC_PATTERN name- PSYS_SRC_PATTERN
value pair. Table 4.2 lists the possible patterns that can be specifi ed.

Scripting Recipes for Second Life104

 Table 4.2: PSYS_SRC_PATTERN Values

Pattern Purpose
PSYS_SRC_PATTERN_DROP Particles start at emitter with no

velocity.
PSYS_SRC_PATTERN_EXPLODE Particles explode from the emitter.
PSYS_SRC_PATTERN_ANGLE Particles are emitted in a 2-D

angle.
PSYS_SRC_PATTERN_ANGLE_CONE Particles are emitted in a 3-D cone.
PSYS_SRC_PATTERN_ANGLE_CONE_EMPTY Particles are emitted everywhere

except for a 3-D cone.

The remaining name-value pairs are simply a name and a simple value such as a number,
texture key, or vector. These name-value pairs are summarized in Table 4.3.

105Chapter 4: Particle Effects

 Table 4.3: Remaining Particle Emitter Name-Value Pairs

Name-Value Pair Purpose
PSYS_SRC_TARGET_KEY Specifi es the key of an object or avatar that

the particles will move towards. The PSYS_
PART_TARGET_POS_MASK fl ag must be
specifi ed for the PSYS_SRC_TARGET_KEY
name-value pair to have any effect.

PSYS_SRC_TEXTURE Specifi es the UUID or inventory name of the
desired particle texture.

PSYS_SRC_MAX_AGE Specifi es the maximum amount of time, in
seconds, that the particle emitter should emit
particles. Specify 0.0 for forever.

PSYS_PART_MAX_AGE Specifi es the amount of time, in seconds, that
each particle should remain for.

PSYS_SRC_BURST_RATE Specifi es the amount of time, in seconds, be-
tween each emission of particles.

PSYS_SRC_BURST_PART_COUNT Specifi es the number of particles to be pro-
duced during each emission.

PSYS_SRC_BURST_RADIUS Specifi es the radius, in meters, of each particle
emission.

PSYS_SRC_BURST_SPEED_MIN Specifi es the minimum burst speed of the
particles.

PSYS_SRC_BURST_SPEED_MAX Specifi es the maximum burst speed of the
particles.

PSYS_SRC_ACCEL Specifi es the acceleration vector for the par-
ticles.

PSYS_PART_START_COLOR Specifi es a starting RGB color for the particles.
Only works if the INTERP_COLOR_MASK fl ag
is on.

PSYS_PART_END_COLOR, Specifi es an ending RGB color for the par-
ticles. Only works if the INTERP_COLOR_
MASK fl ag is on.

PSYS_PART_START_ALPHA Specifi es the starting transparency for par-
ticles. Specify a value of 1.0 for opaque and
0.0 for transparent.

PSYS_PART_END_ALPHA Specifi es the ending transparency for particles.
Specify a value of 1.0 for opaque and 0.0 for
transparent.

Scripting Recipes for Second Life106

PSYS_PART_START_SCALE Specifi es the starting particle size, as a vector.
Only works if the INTERP_SCALE_MASK fl ag
was set.

PSYS_PART_END_SCALE Specifi es the ending particle size, as a vector.
Only works if the INTERP_SCALE_MASK fl ag
was set.

PSYS_SRC_ANGLE_BEGIN Specifi es the inner angle, in radians, for angle
patterns.

PSYS_SRC_ANGLE_END Specifi es the outer angle, in radians, for angle
patterns.

PSYS_SRC_OMEGA Specifi es the angle of rotation patterns.

 By modifying these values, any sort of particle emitter script can be created. The basic par-
ticle emitter script presented in this recipe creates red particles. The script specifi es a vector of
 <1,0,0> for the PSYS_PART_START_COLOR and PSYS_PART_END_COLOR .
The value <1,0,0> is RGB for red. The particles start with a size of <.25,.25,.25>
and end with a size of <1.5,1.5,1.5> . No texture is specifi ed so the particles will be
glowing spheres. To cause the particles to go up a PSYS_SRC_ACCEL of <0,0,1> is
specifi ed.

 Many of the remaining recipes in this chapter will simply modify the values of the
basic particle script to create other effects. Once a particle system has been speci-
fi ed for a prim, that prim will continue to emit particles until the amount of time speci-
fi ed by PSYS_SRC_MAX_AGE elapses. If a value of zero was specifi ed, the prim will
continue to create particles indefi nably. To stop the prim from producing particles, the
 llParticleSystem function call should be called with an empty set, as seen here: llParticleSystem function call should be called with an empty set, as seen here: llParticleSystem

 llParticleSystem([]);

 Once an empty set has been specifi ed to the particle system, no more particles will be
produced.

 Recipe 4.2: Chimney
 Chimneys are a popular addition to many buildings in Second Life. By using a particle

emitter script, a chimney can be made to produce smoke as well. This produces a very real-
istic looking chimney. The example chimney script, provided at the Heaton Research Tower
is shown in Figure 4.2.

107Chapter 4: Particle Effects

 Figure 4.2: Chimney

 The chimney script begins with the basic emitter script. The completed chimney script
can be seen in Listing 4.2.

 Listing 4.2: Chimney (Smoke.lsl)

 generalParticleEmitterOn()
{
 llParticleSystem([
 PSYS_PART_FLAGS , 0
 //| PSYS_PART_BOUNCE_MASK
//Bounce on object's z-axis
 | PSYS_PART_WIND_MASK
//Particles are moved by wind
 | PSYS_PART_INTERP_COLOR_MASK
//Colors fade from start to end
 | PSYS_PART_INTERP_SCALE_MASK
//Scale fades from beginning to end
 | PSYS_PART_FOLLOW_SRC_MASK
//Particles follow the emitter
 | PSYS_PART_FOLLOW_VELOCITY_MASK
//Particles are created at the velocity of the emitter

Scripting Recipes for Second Life108

 //| PSYS_PART_TARGET_POS_MASK
//Particles follow the target
 | PSYS_PART_EMISSIVE_MASK
//Particles are self-lit (glow)
 //| PSYS_PART_TARGET_LINEAR_MASK
//Undocumented--Sends particles in straight line?
 ,

 //PSYS_SRC_TARGET_KEY , NULL_KEY,
//The particles will head towards the specified key
 //Select one of the following for a pattern:
 //PSYS_SRC_PATTERN_DROP Particles start at
emitter with no velocity
 //PSYS_SRC_PATTERN_EXPLODE Particles explode from
the emitter
 //PSYS_SRC_PATTERN_ANGLE Particles are emitted
in a 2-D angle
 //PSYS_SRC_PATTERN_ANGLE_CONE Particles are emitted
in a 3-D cone
 //PSYS_SRC_PATTERN_ANGLE_CONE_EMPTY Particles are emitted
everywhere except for a 3-D cone

 PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_ANGLE_CONE

 ,PSYS_SRC_TEXTURE, "smoke"
//UUID of the desired particle texture, or inventory name
 ,PSYS_SRC_MAX_AGE, 0.0
//Time, in seconds, for particles to be emitted. 0 = forever
 ,PSYS_PART_MAX_AGE, 3.0
//Lifetime, in seconds, that a particle lasts
 ,PSYS_SRC_BURST_RATE, 0.5
//How long, in seconds, between each emission
 ,PSYS_SRC_BURST_PART_COUNT, 3
//Number of particles per emission
 ,PSYS_SRC_BURST_RADIUS, 10.0
//Radius of emission
 ,PSYS_SRC_BURST_SPEED_MIN, .4
//Minimum speed of an emitted particle
 ,PSYS_SRC_BURST_SPEED_MAX, .5
//Maximum speed of an emitted particle
 ,PSYS_SRC_ACCEL, <0.0,0,.05>
//Acceleration of particles each second
 ,PSYS_PART_START_COLOR, <1.0,1.0,1.0>
//Starting RGB color
 ,PSYS_PART_END_COLOR, <1.0,1.0,1.0>
//Ending RGB color, if INTERP_COLOR_MASK is on

109Chapter 4: Particle Effects

 ,PSYS_PART_START_ALPHA, 0.9
//Starting transparency, 1 is opaque, 0 is transparent.
 ,PSYS_PART_END_ALPHA, 0.0
//Ending transparency
 ,PSYS_PART_START_SCALE, <.25,.25,.25>
//Starting particle size
 ,PSYS_PART_END_SCALE, <.75,.75,.75>
//Ending particle size, if INTERP_SCALE_MASK is on
 ,PSYS_SRC_ANGLE_BEGIN, 0 * DEG_TO_RAD
//Inner angle for ANGLE patterns
 ,PSYS_SRC_ANGLE_END, 45 * DEG_TO_RAD
//Outer angle for ANGLE patterns
 ,PSYS_SRC_OMEGA, <0.0,0.0,0.0>
//Rotation of ANGLE patterns, similar to llTargetOmega()
]);
}

generalParticleEmitterOff()
{
 llParticleSystem([]);
}

default
{
 state_entry()
 {
 generalParticleEmitterOn();
 }

 touch_start(integer num)
 {
 }
}

state off
{
 state_entry()
 {
 generalParticleEmitterOff();
 }

 touch_start(integer num)
 {
 state default;
 }
}

Scripting Recipes for Second Life110

 The most basic difference between the chimney script and the basic particle emitter script
is that the chimney script uses textures. Located inside of the object inventory of the chimney
object is a texture named “smoke”. This texture is a puff of smoke, which will be used as the
particle texture.

 To produce the smoke, a PSYS_PART_MAX_AGE of three seconds is speci-
fi ed. The smoke will disappear relatively quickly as it rises from the chimney. The
 PSYS_SRC_BURST_RATE and PSYS_SRC_BURST_PART_COUNT specify the cre-
ation of three new puffs of smoke every half a second.

 The PSYS_SRC_BURST_SPEED_MIN and PSYS_SRC_BURST_SPEED_MIN and PSYS_SRC_BURST_SPEED_MIN PSYS_SRC_BURST_SPEED_MAX of
.4 and .5 cause the smoke to rise relatively slowly. The values for PSYS_PART_START_COLOR
and PSYS_PART_END_COLOR specify that the smoke both starts and stops as white. The
 PSYS_SRC_ANGLE_BEGIN and PSYS_SRC_ANGLE_BEGIN and PSYS_SRC_ANGLE_BEGIN PSYS_SRC_ANGLE_END specify that the smoke
will be emitted between zero and 45 degrees.

 Recipe 4.3: Leaf Generator
 Trees are a very common sight in Second Life. Some trees drop a stream of leaves to give

a fall effect. This recipe will show how to create a leaf generator. The leaf generator can be
seen in Figure 4.3.

111Chapter 4: Particle Effects

 Figure 4.3: Fall Leafs

 The leaf generator was based on the basic particle script seen in Recipe 4.1. To learn
more about the values that can be specifi ed for a particle emitter, refer to Recipe 4.1. The
script for the leaf particle emitter can be seen in Listing 4.3.

 Listing 4.3: Fall Leafs (Leafs.lsl)

 generalParticleEmitterOn()
{
 llParticleSystem([
 PSYS_PART_FLAGS , 0
 //| PSYS_PART_BOUNCE_MASK
//Bounce on object's z-axis
 | PSYS_PART_WIND_MASK
//Particles are moved by wind
 | PSYS_PART_INTERP_COLOR_MASK
//Colors fade from start to end
 | PSYS_PART_INTERP_SCALE_MASK
//Scale fades from beginning to end
 | PSYS_PART_FOLLOW_SRC_MASK
//Particles follow the emitter
 | PSYS_PART_FOLLOW_VELOCITY_MASK

Scripting Recipes for Second Life112

//Particles are created at the velocity of the emitter
 //| PSYS_PART_TARGET_POS_MASK
//Particles follow the target
 | PSYS_PART_EMISSIVE_MASK
//Particles are self-lit (glow)
 //| PSYS_PART_TARGET_LINEAR_MASK
//Undocumented--Sends particles in straight line?
 ,

 //PSYS_SRC_TARGET_KEY , NULL_KEY,
//The particles will head towards the specified key
 //Select one of the following for a pattern:
 //PSYS_SRC_PATTERN_DROP Particles start at
emitter with no velocity
 //PSYS_SRC_PATTERN_EXPLODE Particles explode from
the emitter
 //PSYS_SRC_PATTERN_ANGLE Particles are emitted
in a 2-D angle
 //PSYS_SRC_PATTERN_ANGLE_CONE Particles are emitted
in a 3-D cone
 //PSYS_SRC_PATTERN_ANGLE_CONE_EMPTY Particles are emitted
everywhere except for a 3-D cone

 PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_ANGLE_CONE

 ,PSYS_SRC_TEXTURE, "leaf"
//UUID of the desired particle texture, or inventory name
 ,PSYS_SRC_MAX_AGE, 0.0
//Time, in seconds, for particles to be emitted. 0 = forever
 ,PSYS_PART_MAX_AGE, 10.0
//Lifetime, in seconds, that a particle lasts
 ,PSYS_SRC_BURST_RATE, 0.5
//How long, in seconds, between each emission
 ,PSYS_SRC_BURST_PART_COUNT, 6
//Number of particles per emission
 ,PSYS_SRC_BURST_RADIUS, 10.0
//Radius of emission
 ,PSYS_SRC_BURST_SPEED_MIN, 0.1
//Minimum speed of an emitted particle
 ,PSYS_SRC_BURST_SPEED_MAX, 0.5
//Maximum speed of an emitted particle
 ,PSYS_SRC_ACCEL, <0,0,0>
//Acceleration of particles each second
 ,PSYS_PART_START_COLOR, <1,1,1>
//Starting RGB color
 ,PSYS_PART_END_COLOR, <0,0,0>

113Chapter 4: Particle Effects

//Ending RGB color, if INTERP_COLOR_MASK is on
 ,PSYS_PART_START_ALPHA, 1.0
//Starting transparency, 1 is opaque, 0 is transparent.
 ,PSYS_PART_END_ALPHA, 1.0
//Ending transparency
 ,PSYS_PART_START_SCALE, <.25,.25,.25>
//Starting particle size
 ,PSYS_PART_END_SCALE, <.25,.25,.25>
//Ending particle size, if INTERP_SCALE_MASK is on
 ,PSYS_SRC_ANGLE_BEGIN, 90 * DEG_TO_RAD
//Inner angle for ANGLE patterns
 ,PSYS_SRC_ANGLE_END, 90 * DEG_TO_RAD
//Outer angle for ANGLE patterns
 ,PSYS_SRC_OMEGA, <0.0,0.0,0.0>
//Rotation of ANGLE patterns, similar to llTargetOmega()
]);
}

generalParticleEmitterOff()
{
 llParticleSystem([]);
}

default
{
 state_entry()
 {
 generalParticleEmitterOn();
 }

 touch_start(integer num)
 {
 }
}

state off
{
 state_entry()
 {
 generalParticleEmitterOff();
 }

 touch_start(integer num)
 {
 state default;
 }

Scripting Recipes for Second Life114

}

 Unlike the basic particle script, the leaf emitter script uses a texture. This texture, named
“leaf” is an image of a fall leaf. It is located in the object inventory of the leaf emitter. This al-
lows the particles to appear as leaves.

 To produce the leaves a PSYS_PART_MAX_AGE of 10 seconds is specifi ed. The
leaves disappear relatively slowly as they travel. The PSYS_SRC_BURST_RATE and
 PSYS_SRC_BURST_PART_COUNT specify the creation of six new leafs every half a sec-
ond.

 The PSYS_SRC_BURST_SPEED_MIN and PSYS_SRC_BURST_SPEED_MIN and PSYS_SRC_BURST_SPEED_MIN PSYS_SRC_BURST_SPEED_MAX
of .1 and .5 cause the leaves to travel relatively slowly. The PSYS_SRC_ANGLE_BEGIN
and PSYS_SRC_ANGLE_END specify that the leaves will be emitted at 90 degrees.

 Recipe 4.4: Jewelry
 Jewelry is a popular accessory in Second Life. There are many types of jewelry in Second

Life, such as necklaces, rings, ear-rings, bracelets and other forms. Some jewelry in Second
Life appears to glitter. This glitter effect is done with a particle emitter. This recipe will show
how to create a bracelet that uses a particle emitter to glitter. This glitter effect is sometimes
called bling. This bracelet is shown in Figure 4.4.

115Chapter 4: Particle Effects

 Figure 4.4: Jewelry

 The jewelry script was based on the basic particle script seen in Recipe 4.1. To learn
more about the values that can be specifi ed for a particle emitter, refer to Recipe 4.1. The
script for the jewelry particle emitter can be seen in Listing 4.4.

 Listing 4.4: Jewelry (Bling.lsl)

 generalParticleEmitterOn()
{
 llParticleSystem([
 PSYS_PART_FLAGS , 0
 //| PSYS_PART_BOUNCE_MASK
//Bounce on object's z-axis
 //| PSYS_PART_WIND_MASK
//Particles are moved by wind
 | PSYS_PART_INTERP_COLOR_MASK
//Colors fade from start to end
 | PSYS_PART_INTERP_SCALE_MASK
//Scale fades from beginning to end
 | PSYS_PART_FOLLOW_SRC_MASK
//Particles follow the emitter
 | PSYS_PART_FOLLOW_VELOCITY_MASK

Scripting Recipes for Second Life116

//Particles are created at the velocity of the emitter
 //| PSYS_PART_TARGET_POS_MASK
//Particles follow the target
 | PSYS_PART_EMISSIVE_MASK
//Particles will glow
 //| PSYS_PART_TARGET_LINEAR_MASK
//Undocumented--Sends particles in straight line?
 ,

 //PSYS_SRC_TARGET_KEY , NULL_KEY,
//The particles will head towards the specified key
 //Select one of the following for a pattern:
 //PSYS_SRC_PATTERN_DROP Particles start at
emitter with no velocity
 //PSYS_SRC_PATTERN_EXPLODE Particles explode from
the emitter
 //PSYS_SRC_PATTERN_ANGLE Particles are emitted
in a 2-D angle
 //PSYS_SRC_PATTERN_ANGLE_CONE Particles are emitted
in a 3-D cone
 //PSYS_SRC_PATTERN_ANGLE_CONE_EMPTY Particles are emitted
everywhere except for a 3-D cone

 PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_EXPLODE

 ,PSYS_SRC_TEXTURE, ""
//UUID of the desired particle texture, or inventory name
 ,PSYS_SRC_MAX_AGE, 0.0
//Time, in seconds, for particles to be emitted. 0 = forever
 ,PSYS_PART_MAX_AGE, 0.2
//Lifetime, in seconds, that a particle lasts
 ,PSYS_SRC_BURST_RATE, 0.5
//How long, in seconds, between each emission
 ,PSYS_SRC_BURST_PART_COUNT, 6
//Number of particles per emission
 ,PSYS_SRC_BURST_RADIUS, 10.0
//Radius of emission
 ,PSYS_SRC_BURST_SPEED_MIN, .1
//Minimum speed of an emitted particle
 ,PSYS_SRC_BURST_SPEED_MAX, .1
//Maximum speed of an emitted particle
 ,PSYS_SRC_ACCEL, <0,0,0>
//Acceleration of particles each second
 ,PSYS_PART_START_COLOR, <1,1,1>
//Starting RGB color
 ,PSYS_PART_END_COLOR, <1,1,1>

117Chapter 4: Particle Effects

//Ending RGB color, if INTERP_COLOR_MASK is on
 ,PSYS_PART_START_ALPHA, 1.0
//Starting transparency, 1 is opaque, 0 is transparent.
 ,PSYS_PART_END_ALPHA, 1.0
//Ending transparency
 ,PSYS_PART_START_SCALE, <.04,.25,.01>
//Starting particle size
 ,PSYS_PART_END_SCALE, <.03,.25,.01>
//Ending particle size, if INTERP_SCALE_MASK is on
 ,PSYS_SRC_ANGLE_BEGIN, 1.54
//Inner angle for ANGLE patterns
 ,PSYS_SRC_ANGLE_END, 1.55
//Outer angle for ANGLE patterns
 ,PSYS_SRC_OMEGA, <0.0,0.0,0.0>
//Rotation of ANGLE patterns, similar to llTargetOmega()
]);
}

generalParticleEmitterOff()
{
 llParticleSystem([]);
}

default
{
 state_entry()
 {
 generalParticleEmitterOn();
 }
}

 The jewelry script does not use any textures to produce the effect. A PSYS_PART_MAX_AGE
of just 0.2 seconds is specifi ed. This will make the jewelry glitter appear very briefl y. The
 PSYS_SRC_BURST_RATE and PSYS_SRC_BURST_PART_COUNT specify the cre-
ation of six new fl ashes every half of a second.

 The PSYS_SRC_BURST_SPEED_MIN and PSYS_SRC_BURST_SPEED_MIN and PSYS_SRC_BURST_SPEED_MIN PSYS_SRC_BURST_SPEED_MAX
of .1 and .1 cause the fl ash to barely move. The values for PSYS_PART_START_COLOR
and PSYS_PART_END_COLOR specify that the fl ash starts and stops as white. The
 PSYS_SRC_ANGLE_BEGIN and PSYS_SRC_ANGLE_BEGIN and PSYS_SRC_ANGLE_BEGIN PSYS_SRC_ANGLE_END specify a narrow emitter
angle.

Scripting Recipes for Second Life118

 Recipe 4.5: Explosion
 Explosions can be a useful effect in Second Life. This recipe implements an explosion

that includes fi re, smoke and a bang sound effect. To see the explosion in action, touch the
black sphere that contains it. The object will explode, as seen in Figure 4.5.

 Figure 4.5: Explosion

 The explosion script is not based on the basic particle script, as were previous recipes.
The script for the explosion script can be seen in Listing 4.5.

 Listing 4.5: Explosion (Explode.lsl)

 fakeMakeExplosion(integer particle_count, float particle_scale,
float particle_speed,
 float particle_lifetime, float source_cone,
string source_texture_id,
 vector local_offset)
{
 //local_offset is ignored
 llParticleSystem([
 PSYS_PART_FLAGS, PSYS_PART_INTERP_COLOR_

119Chapter 4: Particle Effects

MASK|PSYS_PART_INTERP_SCALE_MASK|PSYS_PART_EMISSIVE_MASK|
 PSYS_PART_WIND_MASK,
 PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_ANGLE_CONE,
 PSYS_PART_START_COLOR, <1.0, 1.0, 1.0>,
 PSYS_PART_END_COLOR, <1.0, 1.0, 1.0>,
 PSYS_PART_START_ALPHA, 0.50,
 PSYS_PART_END_ALPHA, 0.25,
 PSYS_PART_START_SCALE, <particle_scale,
 particle_scale, 0.0>,
 PSYS_PART_END_SCALE, <particle_scale * 2
 + particle_lifetime, particle_scale * 2
 + particle_lifetime, 0.0>,
 PSYS_PART_MAX_AGE, particle_lifetime,
 PSYS_SRC_ACCEL, <0.0, 0.0, 0.0>,
 PSYS_SRC_TEXTURE, source_texture_id,
 PSYS_SRC_BURST_RATE, 1.0,
 PSYS_SRC_ANGLE_BEGIN, 0.0,
 PSYS_SRC_ANGLE_END, source_cone * PI,
 PSYS_SRC_BURST_PART_COUNT, particle_count / 2,
 PSYS_SRC_BURST_RADIUS, 0.0,
 PSYS_SRC_BURST_SPEED_MIN, particle_speed / 3,
 PSYS_SRC_BURST_SPEED_MAX, particle_speed * 2/3,
 PSYS_SRC_MAX_AGE, particle_lifetime / 2,
 PSYS_SRC_OMEGA, <0.0, 0.0, 0.0>
]);
}

default
{
 state_entry()
 {
 llPreloadSound("explosion");
 llSetText("Touch to Explode", <0.0, 1.0, 0.0>, 1.0);
 }

 touch_start(integer total_number)
 {
 fakeMakeExplosion(80, 1.0, 13.0, 2.2, 1.0, "fire",
 <0.0, 0.0, 0.0>);
 llTriggerSound("explosion", 10.0);
 llSleep(.5);
 fakeMakeExplosion(80, 1.0, 13.0, 2.2, 1.0, "smoke",
 <0.0, 0.0, 0.0>);
 llSleep(1);

Scripting Recipes for Second Life120

 llParticleSystem([]);
 }
}

 The explosion script uses a function named fakeMakeExplosion . The
 fakeMakeExplosion is a function that was posted to the Linden Scripting Language
Wiki (http://wiki.secondlife.com/wiki/ Wiki (http://wiki.secondlife.com/wiki/ Wiki () and which emulates the behavior of the http://wiki.secondlife.com/wiki/) and which emulates the behavior of the http://wiki.secondlife.com/wiki/
older function llMakeExplosion . The llMakeExplosion function has been
deprecated and should no longer be used. However, the fakeMakeExplosion closely
emulates the behavior of the original llMakeExplosion .

 The fakeMakeExplosion function accepts the seven parameters. These param-
eters are specifi ed in Table 4.4.

 Table 4.4: Parameters for fakeMakeExplosion

Parameter Purpose
particles How many particles should be used for the explosion.
scale How big should the particles be.
vel What is the velocity for the explosion particles.
lifetime How long, in seconds, should the explosion particles last.
arc The explosion should occur between 0 and the angle specifi ed.
texture What texture should be used for the explosion particles.
offset How far from the object should the explosion occur.

 The following code is used in the explosion recipe to create an explosion effect. First
 fakeMakeExplosion is called to produce an initial blast of fi re.

 fakeMakeExplosion(80, 1.0, 13.0, 2.2, 1.0, "fire",
<0.0, 0.0, 0.0>);

 Next the explosion sound is played.

 llTriggerSound("explosion", 10.0);

 The explosion lasts for about a half second before the smoke begins.

 llSleep(.5);

 Now a similar blast of smoke is produced.

 fakeMakeExplosion(80, 1.0, 13.0, 2.2, 1.0, "smoke",
<0.0, 0.0, 0.0>);

 The smoke is allowed to continue for a second.

121Chapter 4: Particle Effects

 llSleep(1);

 The particle system is shut down.

 llParticleSystem([]);

 This produces a brief explosion that lasts for two seconds.

 Summary
 This chapter provided several recipes for the Linden Scripting Language particle emitter

system. The particle emitter allows a prim to emit 2D particles. These particles can be used
to create many different effects. This chapter provided recipes that demonstrate some of the
most common uses for particle scripts.

 A basic particle emitter script was presented that establishes all of the parameters nec-
essary to begin emitting particles. Unmodifi ed, the basic particle emitter script emits red
particles upwards. However, the basic particle emitter script is meant to be a starting point
for other particle emitter scripts. Many of the recipes in this chapter started with the basic
particle emitter script.

 Particle emitter scripts can be very useful for creating smoke. A recipe to create a chim-
ney was presented in this chapter. The chimney script extended the basic particle script to
produce puffs of smoke. When combined with a brick textured object, a chimney is pro-
duced.

 Trees are very common in Second Life. An interesting fall effect can be created by caus-
ing leaves to fall from trees. A recipe is provided that creates a particle emitter that emits
leafs. The leaves fl oat gently in the wind.

 Jewelry is another common user of particle scripts in Second Life. By using a particle
script, Jewelry can be made to glitter. This effect is often called bling. Such “bling enabled”
jewelry has become very popular in Second Life.

 Particle emitter scripts can also be useful for causing vehicles to produce trails. The next
chapter introduces Second Life vehicles. One of the vehicles will use a particle emitter script
to leave waves behind a boat as it travels in the water.

Scripting Recipes for Second Life122

123Chapter 5: Vehicles

 CHAPTER 5: VEHICLES

 • Create a Car
 • Create a Boat
 • Create a Helicopter
 • Create a Super Car that is all Three
 • Linear and Angular Motors

 In a virtual world, such as Second Life, where people can fl y and teleport, why would
someone need a vehicle? Despite this, vehicles are very popular in Second Life where there
are many different types of vehicles. In this chapter recipes will be presented for three differ-
ent vehicle types. A fourth vehicle will combine all of the previous four and produce a “Super
Car”.

 The recipes in this chapter cover three categories of vehicles. A car was selected to
represent land vehicles. A boat was selected to represent water vehicles. A helicopter was
selected to represent air vehicles. Finally, a super car was created that shares attributes with
all of the previous vehicles. The super car is comfortable on land, sea or air. The vehicles
covered by this chapter are presented in Figure 5.1.

Scripting Recipes for Second Life124

 Figure 5.1: Second Life Vehicles

 The fi rst vehicle to be covered will be the car. Many of the vehicles share characteristics
with the car. Implementation of these common characteristics will not be repeated in the
later recipes. Therefore, it is important to review the car recipe, no matter what type of ve-
hicle you are interested in creating.

 Recipe 5.1: Car
 The example car for this recipe is a bright-red two seater convertible. The car is not a

true convertible, in that it does not convert. It is always in top-down mode. Because it never
rains in Second Life, this is not a problem! The little red sports car is shown in Figure 5.2.

125Chapter 5: Vehicles

 Figure 5.2: A Car in Second Life

 The next few sections will explain different aspects of the car, and how it was constructed
and scripted.

 Vehicle Materials

 All prims in Second Life have a material. The following materials are supported in Sec-
ond Life: stone, metal, glass, wood, fl esh, plastic and rubber. Materials affect the mass and
friction of the vehicle. The majority of prims in Second Life are made of wood. This is be-
cause wood is the default material. Material type is specifi ed in the object window. Figure 5.3
shows the material type being set.

Scripting Recipes for Second Life126

 Figure 5.3: Setting the Material Type

 Material types are very important for vehicles in Second Life. The material type for the
tires of the car is of particular importance. Which of the above material types should be
chosen for the tires? It may seem that rubber is the logical choice. Rubber would create too
much friction. Remember, that in the simplistic physics of Second Life, the tires do not really
turn. They appear to turn, due to a trick used later in this recipe. But they are not really turn-
ing. Imagine a parked car being pushed along the ground. If the parking brake is on, that car
will not move as well. The rubber would burn and the car would merely bump along. This is
what happens when the tires are made of rubber in Second Life. The car barely moves.

 The material of choice is surprising. It is the material with the least friction - glass. Any
part of the vehicle that comes into contact with the ground should be made of glass. Durabil-
ity is not an issue with a prim! Glass wheels are the norm in Second Life. Don't think of the
materials as the actual materials. Rather, think of the material types as specifying the amount
of friction the prim will cause.

127Chapter 5: Vehicles

 The Root Prim

 The car, like any other object in Second Life, consists of several primitives. However,
not all primitives are equal. The most important primitive, or prim, is the root prim. When
an object is selected, the root prim is shown outlined in yellow. The root prim is a very im-
portant concept for vehicles.

 The root prim is the last prim selected when the vehicle was linked together. Therefore,
it is very easy to accidentally change the root prim when new prims are being added to the
object. For example, consider adding a bumper sticker to the car. Consider if the car was
selected, the bumper sticker shift-selected and a link created. The bumper sticker would now
be a part of the car object. However, the bumper sticker would now be the root prim! The
bumper sticker was the last prim selected, so it is now the root prim. This would prevent the
car from functioning properly. This is because the car is designed for the driver's seat to be
the root prim.

 The correct way to add the bumper sticker to the car would be to do the procedure de-
scribed above in reverse. First, select the bumper sticker. Then shift-select the car and cre-
ate the link. Now the car is the last object selected and the root prim will not change.

 The root primitive is critical to a vehicle because the root prim is where the main vehicle
script resides. Think of the root prim as the motor for the vehicle. It is the root prim that is
moving, everything else is only attached to the root prim. It is also convenient if the driver
sits on the root prim. This is why most vehicles in Second Life always make the root prim
the driver's seat.

 It also makes vehicle creation considerably easier if the root prim is at zero rotation in all
three directions. At the very least, the root prim should only be rotated in 90-degree intervals
in the three dimensions.

 The root prim must be made a physical object for the vehicle to operate. Normally,
this is done in code using a call to llSetStatus . However, being physical imposes an
important limitation on vehicles. Physical objects in Second Life can contain no more than
31 prims. Because of this, no vehicle can contain more than 31 prims. If prim number 32 is
added, the vehicle will stop.

 The root prim is where the main car script resides. The car script can be seen in Listing
5.1.

 Listing 5.1: Main Car Script for the Root Prim (Car.lsl)

 float forward_power = 15; //Power used to go forward (1 to 30)
float reverse_power = -15; //Power used to go reverse (-1 to -30)
float turning_ratio = 2.0; //How sharply the vehicle turns. Less
is more sharply. (.1 to 10)
string sit_message = "Ride"; //Sit message

Scripting Recipes for Second Life128

string not_owner_message = "You are not the owner of this vehicle
..."; //Not owner message

default
{
 state_entry()
 {
 llSetSitText(sit_message);
 // forward-back,left-right,updown
 llSitTarget(<0.2,0,0.45>, ZERO_ROTATION);

 llSetCameraEyeOffset(<-8, 0.0, 5.0>);
 llSetCameraAtOffset(<1.0, 0.0, 2.0>);

 llPreloadSound("car_start");
 llPreloadSound("car_run");

 //car
 llSetVehicleType(VEHICLE_TYPE_CAR);
 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0.2);
 llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0.80);
 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 0.10);
 llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 0.10);
 llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_TIMESCALE, 1.0);
 llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 0.2);
 llSetVehicleFloatParam(
VEHICLE_ANGULAR_MOTOR_TIMESCALE, 0.1);
 llSetVehicleFloatParam(
VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 0.5);
 llSetVehicleVectorParam(
VEHICLE_LINEAR_FRICTION_TIMESCALE, <1000.0, 2.0, 1000.0>);
 llSetVehicleVectorParam(
VEHICLE_ANGULAR_FRICTION_TIMESCALE, <10.0, 10.0, 1000.0>);
 llSetVehicleFloatParam(
VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 0.50);
 llSetVehicleFloatParam(
VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 0.50);
 }

 changed(integer change)
 {

129Chapter 5: Vehicles

 if (change & CHANGED_LINK)
 {

 key agent = llAvatarOnSitTarget();
 if (agent)
 {
 if (agent != llGetOwner())
 {
 llSay(0, not_owner_message);
 llUnSit(agent);
 llPushObject(agent, <0,0,50>,
ZERO_VECTOR, FALSE);
 }
 else
 {
 llTriggerSound("car_start",1);

 llMessageLinked(LINK_ALL_CHILDREN , 0,
"WHEEL_DRIVING", NULL_KEY);
 llSleep(.4);
 llSetStatus(STATUS_PHYSICS, TRUE);
 llSleep(.1);
 llRequestPermissions(agent,
PERMISSION_TRIGGER_ANIMATION | PERMISSION_TAKE_CONTROLS);

 llLoopSound("car_run",1);
 }
 }
 else
 {
 llStopSound();

 llSetStatus(STATUS_PHYSICS, FALSE);
 llSleep(.4);
 llReleaseControls();
 llTargetOmega(<0,0,0>,PI,0);

 llResetScript();
 }
 }

 }

Scripting Recipes for Second Life130

 run_time_permissions(integer perm)
 {
 if (perm)
 {
 llTakeControls(CONTROL_FWD | CONTROL_BACK |
CONTROL_DOWN | CONTROL_UP | CONTROL_RIGHT |
 CONTROL_LEFT | CONTROL_ROT_RIGHT |
CONTROL_ROT_LEFT, TRUE, FALSE);
 }
 }

 control(key id, integer level, integer edge)
 {
 integer reverse=1;
 vector angular_motor;

 //get current speed
 vector vel = llGetVel();
 float speed = llVecMag(vel);

 //car controls
 if(level & CONTROL_FWD)
 {
 llSetVehicleVectorParam(
VEHICLE_LINEAR_MOTOR_DIRECTION, <forward_power,0,0>);
 reverse=1;
 }
 if(level & CONTROL_BACK)
 {
 llSetVehicleVectorParam(
VEHICLE_LINEAR_MOTOR_DIRECTION, <reverse_power,0,0>);
 reverse = -1;
 }

 if(level & (CONTROL_RIGHT|CONTROL_ROT_RIGHT))
 {
 angular_motor.z -= speed / turning_ratio * reverse;
 }

 if(level & (CONTROL_LEFT|CONTROL_ROT_LEFT))
 {
 angular_motor.z += speed / turning_ratio * reverse;
 }

 llSetVehicleVectorParam(VEHICLE_ANGULAR_MOTOR_DIRECTION,
 angular_motor);

131Chapter 5: Vehicles

 } //end control

} //end default

 The following sections explain the various parts of the car script.

 Obtaining Permission

 The car will be driven in a similar way to how an avatar walks. Cursor keys will turn and
move it forward and backward. However, for a script to do this, it must get permission from
the avatar. This is done with the run_time_permissions event handler. This event
handler is shown here.

 run_time_permissions(integer perm)
{
 if (perm)
 {
 llTakeControls(CONTROL_FWD | CONTROL_BACK |
 CONTROL_DOWN | CONTROL_UP | CONTROL_RIGHT |
 CONTROL_LEFT | CONTROL_ROT_RIGHT |
 CONTROL_ROT_LEFT, TRUE, FALSE);
 }
}

 The same event handler is used for all of the vehicles in this chapter.

 Sitting Down as the Driver

 When an avatar sits down to drive the car, the car must perform a setup before the avatar
can begin driving the car. The changed event handler is called when an avatar sits on an
object. First, the changed event handler checks to see whether it was called because an
object was linked to it. In this case, it was the avatar that was linked to the car object.

 changed(integer change)
{
 if (change & CHANGED_LINK)
 {

 Next, the script checks to see what avatar sat on it. If it was an avatar that sat on the car,
the car checks to see whether the avatar is the car's owner.

 key agent = llAvatarOnSitTarget();
 if (agent)
 {
 if (agent != llGetOwner())
 {

Scripting Recipes for Second Life132

 If it is not the car's owner, the car informs the avatar that they are not allowed to drive the
car. The avatar is pushed away.

 llSay(0, not_owner_message);
 llUnSit(agent);
 llPushObject(agent, <0,0,50>,
 ZERO_VECTOR, FALSE);
 }

 If it is the car's owner, it is time to set up the car so that it can be driven. First, the
 car_start sound is played. The car is then enabled as a physical object. A physical
object can be pushed by external or internal forces. Permission to take the controls is then
requested. Finally, the car_run sound is looped.

 else
 {
 llTriggerSound("car_start",1);

 llSleep(.4);
 llSetStatus(STATUS_PHYSICS, TRUE);
 llSleep(.1);
 llRequestPermissions(agent,
PERMISSION_TRIGGER_ANIMATION | PERMISSION_TAKE_CONTROLS);

 llLoopSound("car_run",1);
 }
 }

 If the avatar is getting up, stop the sound and turn off physics. Controls are released. If
physics are left on, any avatar who bumped into the parked car would move it.

 else
 {
 llStopSound();

 llSetStatus(STATUS_PHYSICS, FALSE);
 llSleep(.1);
 llSleep(.4);
 llReleaseControls();
 llTargetOmega(<0,0,0>,PI,0);
 llResetScript();
 }
 }
}

 The call to llTargetOmega is very important. Without this call, the parked car will
sometimes begin to rotate. This is a very strange, undesirable effect.

133Chapter 5: Vehicles

 This script is very similar to the changed script used for all other vehicles in this chapter.
The only changes will be in the sounds played and in the case of the helicopter starting, the
blades rotating. The boat will also start a “wave trail” behind it. These differences will be
covered in the other recipes in this chapter.

 Controlling the Car

 The control event handler is called when the user interacts with the control keys.
The control keys are the cursor keys and page up/down, as well as other control keys. The
car will only use the cursor keys.

 Vehicles in Second Life are moved by two motors; the linear motor and the angular mo-
tor. The linear motor can move the vehicle in any direction in the x, y and z coordinate
planes. The angular motor can rotate the object in any of the x, y and z coordinate planes.
The car uses both motors. The linear motor moves the car forwards and backwards. The
angular motor turns the car.

 The control event handler begins by setting up some variables that will be needed by
the handler. Because cars turn differently when in reverse, a fl ag is required to indicate if we
are in reverse. Also, a variable is created to hold the direction of the angular motor.

 control(key id, integer level, integer edge)
{
 integer reverse=1;
 vector angular_motor;

 The current speed is obtained. This will be used with turning. Cars need to be in motion
to turn.

 //get current speed
 vector vel = llGetVel();
 float speed = llVecMag(vel);

 Next, each of the relevant controls will be checked. The fi rst control to be checked is the
forward control. When the user presses forward, the linear motor is used to apply the force
to move the car forward. Note also that the car is moving forward by setting the reverse
variable to one.

 //car controls
 if(level & CONTROL_FWD)
 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <forward_power,0,0>);
 reverse=1;
 }

 If the user presses back, apply power in the opposite direction. Note also that the car has
been put in reverse by setting the reverse variable to -1.

Scripting Recipes for Second Life134

 if(level & CONTROL_BACK)
 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <reverse_power,0,0>);
 reverse = -1;
 }

 For a right turn, rotate the car in the z-coordinate. Rotate by the specifi ed angle and take
into account whether the car is going in reverse.

 if(level & (CONTROL_RIGHT|CONTROL_ROT_RIGHT))
 {
 angular_motor.z -= speed /
 turning_ratio * reverse;
 }

 For a left turn, rotate the car in the z-coordinate. Rotate by the specifi ed angle and take
into account whether the car is going in reverse.

 if(level & (CONTROL_LEFT|CONTROL_ROT_LEFT))
 {
 angular_motor.z += speed /
 turning_ratio * reverse;
 }

 Now the angular motor can be set.

 llSetVehicleVectorParam(
 VEHICLE_ANGULAR_MOTOR_DIRECTION, angular_motor);

}

 The control event handler in the script is different for each vehicle type. This is
because each vehicle handles differently. However, each vehicle shares some similarity in
the control event handler.

 Initializing the Car

 The state_entry event handler initializes the car. Initialization is very different for
each vehicle type. The car begins by setting the sit text and sit target.

 state_entry()
 {
 llSetSitText(sit_message);
 // forward-back,left-right,updown
 llSitTarget(<0.2,0,0.45>, ZERO_ROTATION);

 Next, the camera is placed. The camera is offset behind and above the car. Now the
camera looks into the car.

135Chapter 5: Vehicles

 llSetCameraEyeOffset(<-8, 0.0, 5.0>);
 llSetCameraAtOffset(<1.0, 0.0, 2.0>);

 The two sounds that are used are preloaded. This prevents any pause when the sounds
are played for the fi rst time.

 llPreloadSound("car_start");
 llPreloadSound("car_run");

 Next the vehicle parameters are set. The fi rst is the vehicle type, which is set by calling
 llSetVehicleType . Valid values for llSetVehicleType are listed in Table
5.1.

 Table 5.1: Vehicle Types

Vehicle Type Purpose
VEHICLE_TYPE_NONE Not a vehicle.
VEHICLE_TYPE_SLED Simple vehicle that bumps along the ground, has a

tendency to move along its local x-axis.
VEHICLE_TYPE_CAR Vehicle that bounces along the ground but requires

motors to be driven from external controls or other
source.

VEHICLE_TYPE_BOAT Hovers over water with a great deal of friction and
some angular defl ection.

VEHICLE_TYPE_AIRPLANE Uses linear defl ection for lift, no hover, and must bank
to turn.

VEHICLE_TYPE_BALLOON Hover, and friction, and no defl ection.

Additionally vehicle parameters are set using the llSetVehicleFloatParam ,
 llSetVehicleVectorParam and llSetVehicleVectorParam and llSetVehicleVectorParam llSetVehicleRotationParam
function calls. Table 5.2 summarizes the values that can be set with the
 llSetVehicleFloatParam .

Scripting Recipes for Second Life136

 Table 5.2: Floating Point Vehicle Parameters

Parameter Purpose
VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY Value between 0 (no de-

fl ection) and 1 (maximum
strength).

VEHICLE_ANGULAR_DEFLECTION_TIMESCALE Exponential timescale for
the vehicle to achieve full
angular defl ection.

VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE Exponential timescale for
the angular motor's effec-
tiveness to decay toward
zero.

VEHICLE_ANGULAR_MOTOR_TIMESCALE Exponential timescale for
the vehicle to achieve its
full angular motor velocity.

VEHICLE_BANKING_EFFICIENCY Value between -1 (leans
out of turns), 0 (no bank-
ing), and +1 (leans into
turns).

VEHICLE_BANKING_MIX Value between 0 (static
banking) and 1 (dynamic
banking).

VEHICLE_BANKING_TIMESCALE Exponential timescale for
the banking behavior to
take full effect.

VEHICLE_BUOYANCY Value between -1 (double-
gravity) and 1 (full anti-
gravity).

VEHICLE_HOVER_HEIGHT Height at which the vehicle
will try to hover.

VEHICLE_HOVER_EFFICIENCY Value between 0 (bouncy)
and 1 (critically damped)
hover behavior.

VEHICLE_HOVER_TIMESCALE The period of time for the
vehicle to achieve its hover
height.

VEHICLE_LINEAR_DEFLECTION_EFFICIENCY Value between 0 (no de-
fl ection) and 1 (maximum
strength).

137Chapter 5: Vehicles

VEHICLE_LINEAR_DEFLECTION_TIMESCALE An exponential timescale
for the vehicle to redirect
its velocity along its x-axis.

VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE An exponential timescale
for the linear motor's effec-
tiveness to decay toward
zero.

VEHICLE_LINEAR_MOTOR_TIMESCALE An exponential timescale
for the vehicle to achieve
its full linear motor velocity.

VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY Value between 0 (bouncy)
and 1 (critically damped)
attraction of vehicle z-axis
to world z-axis (vertical).

VEHICLE_VERTICAL_ATTRACTION_TIMESCALE An exponential timescale
for the vehicle to align its
z-axis to the world z-axis
(vertical).

 Table 5.3 summarizes the values that can be set with the
 llSetVehicleVectorParam .

 Table 5.3: Vector Vehicle Parameters

Parameter Purpose
VEHICLE_ANGULAR_FRICTION_TIMESCALE The vector of timescales for expo-

nential decay of angular velocity
about the three vehicle axes.

VEHICLE_ANGULAR_MOTOR_DIRECTION The angular velocity that the ve-
hicle will try to achieve.

VEHICLE_LINEAR_FRICTION_TIMESCALE The vector of timescales for ex-
ponential decay of linear velocity
along the three vehicle axes.

VEHICLE_LINEAR_MOTOR_DIRECTION The linear velocity that the vehicle
will try to achieve.

VEHICLE_LINEAR_MOTOR_OFFSET The offset from the center of mass
of the vehicle where the linear mo-
tor is applied.

 Table 5.4 summarizes the values that can be set with the
 llSetVehicleRotationParam .

Scripting Recipes for Second Life138

 Table 5.4: Rotation Point Vehicle Parameters

Parameter Purpose
VEHICLE_REFERENCE_FRAME The rotation of vehicle axes relative to

local frame. Useful for when the root prim
must be rotated.

 The settings for the vehicle parameters of the car will now be reviewed. First, the vehicle
type is set to car. Angular defl ection is the tendency of a vehicle to move in certain directions.
For example, a car will not tend to move in the z-coordinate (up and down). The angular
defl ection effi ciency determines how effective angular defl ection is. A value of 0.2 specifi es
angular defl ection at 20%. This allows the car to turn fairly easily.

 llSetVehicleType(VEHICLE_TYPE_CAR);
llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0.2);

 A value of 0.8 specifi es that linear defl ection has 80% power. This means it takes more
effort for the car to change its linear velocity.

 llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0.80);

 It takes the car one tenth of a second for both linear and angular defl ection to com-
mence.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 0.10);
llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 0.10);

 It takes one second for the linear motor to reach full power.

 llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_TIMESCALE, 1.0);

 The linear motor will drop off in one fi fth of a second. The car will not coast well.

 llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 0.2);

 The angular motor will reach full power in one tenth of a second.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_MOTOR_TIMESCALE, 0.1);

 The angular motor will drop off in 0.5 seconds. The car will stop turning fairly quickly
when the user lets up on the control.

 llSetVehicleFloatParam(

139Chapter 5: Vehicles

VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 0.5);

 Friction affects the car only in the y-coordinate, which is how the car moves forwards and
backwards. The car can quickly fall or turn.

 llSetVehicleVectorParam(
VEHICLE_LINEAR_FRICTION_TIMESCALE, <1000.0, 2.0, 1000.0>);

 The car rotates fairly easily in the z-coordinate, but x and y are more diffi cult to rotate
in.

 llSetVehicleVectorParam(
VEHICLE_ANGULAR_FRICTION_TIMESCALE, <10.0, 10.0, 1000.0>);

 A car should always stay right-side-up. The vertical attraction feature allows this.

 llSetVehicleFloatParam(
VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 0.50);
llSetVehicleFloatParam(
VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 0.50);

 These values work well for a car. However, they will be considerably different for a boat
or helicopter.

 Who Sits Where

 The car allows for one passenger, in addition to the driver. Additional passengers will be
ejected. Figure 5.4 shows the car with a driver and one passenger.

Scripting Recipes for Second Life140

 Figure 5.4: A Car with Two Passengers

 Extra seats must be provided to allow additional people, other than the driver to
ride in a vehicle. The passenger seat has a simple llSitTarget function call in its
 state_entry event handler. The passenger seat can be seen here.

 Listing 5.2: Car Passenger Seat (CarSeat.lsl)

 default
{
 state_entry()
 {
 llSitTarget(<0.2,0,0.45>, ZERO_ROTATION);
 }
}

 The driver's seat should be the root prim, which is the last prim selected. The passen-
ger's seat should be the second to the last prim selected. A third script is also required, to
disallow further seating. The third to the last prim selected should contain a script that pre-
vents the user from sitting down. Such a script can be seen in Listing 5.3.

 Listing 5.3: Can't Sit Here (DontSitHere.lsl)

 default

141Chapter 5: Vehicles

{
 state_entry()
 {
 llSitTarget(<0.2,0,0.45>, ZERO_ROTATION);
 }

 changed(integer change)
 {

 if (change & CHANGED_LINK)
 {
 key agent = llAvatarOnSitTarget();
 if (agent)
 {
 llUnSit(agent);
 llSay(0,"Sorry, this vehicle is full.");
 }
 }
 }
}

 The “don't sit here” script is needed because an avatar will try to choose a seat in the
following order.

 • If the exact prim selected can be sat on, choose it
 • Next, try to sit on the root prim
 • Next, try to sit on the prim selected just before the root prim
 • Next, try to sit on the prim selected two before the root prim and so on

 Because of this, the “chain” of sit targets must be broken just beyond the last passenger
seat. The do not sit here script specifi es a sit target in the state_entry , as for the pas-
senger seat:

 default
{
 state_entry()
 {
 llSitTarget(<0.2,0,0.45>, ZERO_ROTATION);
 }

 Whenever the changed event handler is called, the avatar should be ejected with the
 llUnSit function call.

 changed(integer change)
 {
 if (change & CHANGED_LINK)
 {
 key agent = llAvatarOnSitTarget();

Scripting Recipes for Second Life142

 if (agent)
 {
 llUnSit(agent);
 llSay(0,"Sorry, this vehicle is full.");
 }
 }
 }
}

 This prevents avatars from sitting on unintended parts of the vehicle.

 Turning the Wheels

 To appear more realistic, the car turns its wheels when in motion. There are several
ways that this is commonly done in Second Life vehicles. The method used for this car is
shown in Listing 5.4.

 Listing 5.4: Car Wheel (WheelScript.lsl)

default
{
 state_entry()
 {
 llSetTimerEvent(0.20);
 }
 timer()
 {
 vector vel = llGetVel();
 float speed = llVecMag(vel);
 if(speed > 0)
 {
 llSetTextureAnim(ANIM_ON | SMOOTH | LOOP, 0, 0, 0,
 0, 1, speed*0.5);
 }
 else
 {
 llSetTextureAnim(ANIM_ON | SMOOTH | LOOP | REVERSE,
 0, 0, 0, 0, 1, speed*0.5);
 }
 }
}

 The above script is contained in all four wheels of the car. The script works by rotat-
ing the texture of the wheel in one direction when the car is moving forward, and in an-
other direction when moving backwards. The speed of the car can be obtained by calling
 llGetVel , as seen here.

143Chapter 5: Vehicles

 vector vel = llGetVel();
float speed = llVecMag(vel);
if(speed > 0)
{
 llSetTextureAnim(ANIM_ON | SMOOTH | LOOP, 0, 0, 0, 0, 1,
 speed*0.5);
}
else
{
 llSetTextureAnim(ANIM_ON | SMOOTH | LOOP | REVERSE,
 0, 0, 0, 0, 1, speed*0.5);
}

 The hubcaps must be rotated too. The same script is used.

 There quite a few parts to the car. Unlike previous recipes, one script can not handle
the entire object. Individual scripts are needed in several of the prims that make up the car.
Some parts of the scripts will be reused in other vehicles. However, the other vehicles in this
chapter are either air or sea based. This introduces some differences from the land based
car.

 Recipe 5.2: Boat
 Boats are also very popular in Second Life. The boat is designed to work with sea water.

That is, the built-in water that is at a specifi c height, usually 20 meters. Sea areas can usually
be found by examining the map. Or look for a “water sandbox” on the search. Sandboxes are
public areas that allow anyone to build there. The boat shares some characteristics with the
car. However, there are some important differences.

 • The boat should roll slightly when it turns.
 • The boat has buoyancy, and fl oats on the water.
 • The boat leaves waves in its wake.
 • The boat uses different sounds.
 • The boat has no wheels to turn.

 Most boats in Second Life will not work with artifi cial water. This is because the vehicle
engine does not recognize artifi cial water as water. Artifi cial water is a prim that is textured
to look like water. Recipe 3.1 shows how to create artifi cial water. To create a “boat” that trav-
eled on artifi cial water, an “air vehicle” would need to be created to hover just above it.

 All of the scripts necessary for the boat will be shown. However, only the aspects of
the boat that are different from the car will be explained. If you have not reviewed the car,
Recipe 5.1, should be reviewed prior to learning how to create a boat. The boat can be seen
in Figure 5.5.

Scripting Recipes for Second Life144

 Figure 5.5: A Boat in Second Life

 Most of the script necessary to handle the boat is contained in the root prim. The root
prim is the driver's seat of the boat. This script is shown in Listing 5.5.

 Listing 5.5: The Boat Script (Boat.lsl)

 float forward_power = 25; //Power used to go forward (1 to 30)
float reverse_power = -15; //Power used to go reverse (-1 to -30)
float turning_ratio = 5.0; //How sharply the vehicle turns. Less
is more sharply. (.1 to 10)
string sit_message = "Ride"; //Sit message
string not_owner_message = "You are not the owner of this vehicle
..."; //Not owner message

default
{
 state_entry()
 {
 llSetSitText(sit_message);
 // forward-back,left-right,updown
 llSitTarget(<0.2,0,0.45>, ZERO_ROTATION);

145Chapter 5: Vehicles

 llSetCameraEyeOffset(<-12, 0.0, 5.0>);
 llSetCameraAtOffset(<1.0, 0.0, 2.0>);

 llPreloadSound("boat_start");
 llPreloadSound("boat_run");
 llSetVehicleFlags(0);
 llSetVehicleType(VEHICLE_TYPE_BOAT);
 llSetVehicleFlags(VEHICLE_FLAG_HOVER_UP_ONLY |
 VEHICLE_FLAG_HOVER_WATER_ONLY);
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_FRICTION_TIMESCALE, <1, 1, 1>);
 llSetVehicleFloatParam(
 VEHICLE_ANGULAR_FRICTION_TIMESCALE, 2);

 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <0, 0, 0>);
 llSetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_TIMESCALE, 1);
 llSetVehicleFloatParam(
 VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 0.05);

 llSetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_TIMESCALE,
 1);
 llSetVehicleFloatParam(
 VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 5);
 llSetVehicleFloatParam(VEHICLE_HOVER_HEIGHT, 0.15);
 llSetVehicleFloatParam(VEHICLE_HOVER_EFFICIENCY,.5);
 llSetVehicleFloatParam(VEHICLE_HOVER_TIMESCALE, 2.0);
 llSetVehicleFloatParam(VEHICLE_BUOYANCY, 1);
 llSetVehicleFloatParam(
 VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0.5);
 llSetVehicleFloatParam(
 VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 3);
 llSetVehicleFloatParam(
 VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0.5);
 llSetVehicleFloatParam(
 VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 10);
 llSetVehicleFloatParam(
 VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 0.5);
 llSetVehicleFloatParam(
 VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 2);
 llSetVehicleFloatParam(VEHICLE_BANKING_EFFICIENCY, 1);
 llSetVehicleFloatParam(VEHICLE_BANKING_MIX, 0.1);
 llSetVehicleFloatParam(VEHICLE_BANKING_TIMESCALE, .5);
 llSetVehicleRotationParam(VEHICLE_REFERENCE_FRAME,

Scripting Recipes for Second Life146

 ZERO_ROTATION);
 }

 changed(integer change)
 {

 if (change & CHANGED_LINK)
 {

 key agent = llAvatarOnSitTarget();
 if (agent)
 {
 if (agent != llGetOwner())
 {
 llSay(0, not_owner_message);
 llUnSit(agent);
 llPushObject(agent, <0,0,50>,
 ZERO_VECTOR, FALSE);
 }
 else
 {
 llTriggerSound("boat_start",1);

 llMessageLinked(LINK_ALL_CHILDREN , 0,
 "start", NULL_KEY);
 llSleep(.4);
 llSetStatus(STATUS_PHYSICS, TRUE);
 llSleep(.1);
 llRequestPermissions(agent,
 PERMISSION_TRIGGER_ANIMATION |
 PERMISSION_TAKE_CONTROLS);

 llLoopSound("boat_run",1);
 }
 }
 else
 {
 llStopSound();

 llSetStatus(STATUS_PHYSICS, FALSE);
 llSleep(.1);
 llMessageLinked(LINK_ALL_CHILDREN , 0,
 "stop", NULL_KEY);
 llSleep(.4);

147Chapter 5: Vehicles

 llReleaseControls();
 llTargetOmega(<0,0,0>,PI,0);

 llResetScript();
 }
 }

 }

 run_time_permissions(integer perm)
 {
 if (perm)
 {
 llTakeControls(CONTROL_FWD | CONTROL_BACK |
 CONTROL_DOWN | CONTROL_UP | CONTROL_RIGHT |
 CONTROL_LEFT | CONTROL_ROT_RIGHT |
 CONTROL_ROT_LEFT, TRUE, FALSE);
 }
 }

 control(key id, integer level, integer edge)
 {
 integer reverse=1;
 vector angular_motor;

 //get current speed
 vector vel = llGetVel();
 float speed = llVecMag(vel);

 //car controls
 if(level & CONTROL_FWD)
 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <forward_power,0,0>);
 reverse=1;
 }
 if(level & CONTROL_BACK)
 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <reverse_power,0,0>);
 reverse = -1;
 }

 if(level & (CONTROL_RIGHT|CONTROL_ROT_RIGHT))
 {
 angular_motor.z -= speed / turning_ratio * reverse;

Scripting Recipes for Second Life148

 angular_motor.x += 15;
 }

 if(level & (CONTROL_LEFT|CONTROL_ROT_LEFT))
 {
 angular_motor.z += speed / turning_ratio * reverse;
 angular_motor.x -= 15;
 }

 llSetVehicleVectorParam(VEHICLE_ANGULAR_MOTOR_DIRECTION,
angular_motor);

 } //end control

} //end default

 The next few sections explain how the boat functions.

 Initialization of the Boat

 The car was initialized by setting its vehicle parameters to values that work well for a car.
The boat works similarly. The boat is setup in the state_entry event handler. First, the
boat sets the sit target and sit text.

 state_entry()
{
 llSetSitText(sit_message);
 // forward-back,left-right,updown
 llSitTarget(<0.2,0,0.45>, ZERO_ROTATION);

 Next, the camera is moved to a good distance behind the boat and above it. The camera
looks into the boat. The camera for the boat is placed further back than the car because the
boat is longer than the car.

 llSetCameraEyeOffset(<-12, 0.0, 5.0>);
 llSetCameraAtOffset(<1.0, 0.0, 2.0>);

 The boat's two sounds are preloaded.

 llPreloadSound("boat_start");
 llPreloadSound("boat_run");

 Next, the vehicle parameters are set. For more information on vehicle parameters refer
to Tables 5.1, 5.2 and 5.3.

 llSetVehicleType(VEHICLE_TYPE_BOAT);
llSetVehicleFlags(VEHICLE_FLAG_HOVER_UP_ONLY | VEHICLE_FLAG_HOVER_
WATER_ONLY);
llRemoveVehicleFlags(VEHICLE_FLAG_HOVER_TERRAIN_ONLY

149Chapter 5: Vehicles

| VEHICLE_FLAG_LIMIT_ROLL_ONLY
| VEHICLE_FLAG_HOVER_GLOBAL_HEIGHT);

 The boat sets two of the vehicle fl ags using the llSetVehicleFlags function.
These fl ags are summarized in Table 5.4.

 Table 5.4: Vector Vehicle Parameters

Flag Purpose
VEHICLE_FLAG_NO_DEFLECTION_UP Prevents ground vehicles from

defl ecting up. Also prevents ground
vehicles from “climbing” low prims in
their path.

VEHICLE_FLAG_LIMIT_ROLL_ONLY Allows the vehicle to climb and dive.
Useful for airplanes.

VEHICLE_FLAG_HOVER_WATER_ONLY Ignore terrain height when hovering.
VEHICLE_FLAG_HOVER_TERRAIN_ONLY Ignore water height when hovering.
VEHICLE_FLAG_HOVER_GLOBAL_HEIGHT Hover at global height instead of

height above ground or water.
VEHICLE_FLAG_HOVER_UP_ONLY Always stay at hover height, but go

up. Useful for hover vehicles that
need to jump.

VEHICLE_FLAG_LIMIT_MOTOR_UP Keep ground vehicles on the ground.
VEHICLE_FLAG_MOUSELOOK_STEER Use mouselook to steer the vehicle.
VEHICLE_FLAG_MOUSELOOK_BANK Use mouselook to bank the vehicle.
VEHICLE_FLAG_CAMERA_DECOUPLED The camera moves independently of

the vehicle.

 Friction affects the boat equally in all three coordinate planes.

 llSetVehicleVectorParam(
VEHICLE_LINEAR_FRICTION_TIMESCALE, <1, 1, 1>);

 It will take two seconds for angular friction to have its full effect on the boat.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_FRICTION_TIMESCALE, 2);

 The linear motor will operate with no rotation.

 llSetVehicleVectorParam(
VEHICLE_LINEAR_MOTOR_DIRECTION, <0, 0, 0>);
llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_TIMESCALE, 1);

Scripting Recipes for Second Life150

 The linear motor will decay very quickly.

 llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 0.05);

 The angular motor will take one second to reach full effect.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_MOTOR_TIMESCALE, 1);

 The angular motor will decay in fi ve seconds.

 llSetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE,
5);

 The center of the boat will hover slightly above the water. This accounts for the under-
side of the boat, which should only be partially under water.

 llSetVehicleFloatParam(
VEHICLE_HOVER_HEIGHT, 0.15);

 The boat has 50% hover effi ciency.

 llSetVehicleFloatParam(
VEHICLE_HOVER_EFFICIENCY,.5);

 It will take two seconds for the hover to reach full effect.

 llSetVehicleFloatParam(
VEHICLE_HOVER_TIMESCALE, 2.0);

 A boat has 100% buoyancy.

 llSetVehicleFloatParam(
VEHICLE_BUOYANCY, 1);

 Linear defl ection will be at 50% for the boat.

 llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0.5);

 It will take three seconds for linear defl ection to have its full effect.

 llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 3);

 Angular defl ection will be at 50% for the boat.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0.5);

 It will take ten seconds for angular defl ection to reach full effect.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 10);

151Chapter 5: Vehicles

 A boat should always stay right-side-up. The vertical attraction feature allows this.

 llSetVehicleFloatParam(
VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 0.5);
llSetVehicleFloatParam(
VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 2);

 The boat will have 100% banking effectiveness. A boat banks slightly when turning, this
setting allows this.

 llSetVehicleFloatParam(
VEHICLE_BANKING_EFFICIENCY, 1);

 The boat's banking will be only 10% dynamic. This allows a smooth controlled bank.

 llSetVehicleFloatParam(
VEHICLE_BANKING_MIX, 0.1);

 It will take the boat only half a second to reach full banking. This allows the bank to be
seen quickly when the boat begins to turn.

 llSetVehicleFloatParam(
VEHICLE_BANKING_TIMESCALE, .5);

 There is no rotation on the root prim.

 llSetVehicleRotationParam(
VEHICLE_REFERENCE_FRAME, ZERO_ROTATION);

 There are some variables the boat has that the boat does not. These variables generally
deal with banking, which is something the boat does not support. Additionally, the values
were set to numbers that make sense for a boat.

 Controlling the Boat

 The controls for the boat are similar to the controls for the boat. However, there are
some important differences for banking. Because of these differences, the entire control
event handler will be reviewed.

 The control event handler begins by setting up some variables that will be needed by the
handler. Because boats, like cars, turn differently when in reverse, a fl ag must be kept to
indicate if the boat is in reverse. A variable is also created to hold the direction of the angular
motor.

 control(key id, integer level, integer edge)
 {
 integer reverse=1;
 vector angular_motor;

 The current speed is obtained. This will be used with turning. Boats do not turn when
they are not in motion.

Scripting Recipes for Second Life152

 //get current speed
 vector vel = llGetVel();
 float speed = llVecMag(vel);

 Next, each of the relevant controls will be checked. The fi rst control to be checked is the
forward control. When the user presses forward, the linear motor is used to apply force to
move the boat forward. Note also that the boat moves forward when reverse is set to one.

 //boat controls
 if(level & CONTROL_FWD)
 {
 llSetVehicleVectorParam(
VEHICLE_LINEAR_MOTOR_DIRECTION, <forward_power,0,0>);
 reverse=1;
 }

 If the user presses back, apply power in the opposite direction. Note also that the boat
moves in reverse when the reverse variable is set to -1.

 if(level & CONTROL_BACK)
 {
 llSetVehicleVectorParam(
VEHICLE_LINEAR_MOTOR_DIRECTION, <reverse_power,0,0>);
 reverse = -1;
 }

 For a right turn, rotate the boat in the z-coordinate. Rotate by the specifi ed angle and
take into account if the boat is going in reverse. Also roll the boat by 15 degrees on the x
coordinate.

 if(level & (CONTROL_RIGHT|CONTROL_ROT_RIGHT))
 {
 angular_motor.z -= speed / turning_ratio * reverse;
 angular_motor.x += 15;
 }

 For a left turn, rotate the boat in the z-coordinate. Rotate by the specifi ed angle and take
into account if the boat is going in reverse. Also roll the boat by 15 degrees on the x coordi-
nate.

 if(level & (CONTROL_LEFT|CONTROL_ROT_LEFT))
 {
 angular_motor.z += speed / turning_ratio * reverse;
 angular_motor.x -= 15;
 }

 Now the angular motor can be set.

 llSetVehicleVectorParam(
 VEHICLE_ANGULAR_MOTOR_DIRECTION, angular_motor);

153Chapter 5: Vehicles

 } //end control

 The primary difference between the boat's control event handler and the car's is that the
boat must take banking into account.

 Waves in the Wake

 The boat is designed to leave waves in its wake. This is done with a particle emitter
script. The particle emitter script is based on the basic particle emitter script found in Recipe
4.1. The boat's wake script can be seen in Listing 5.6.

 Listing 5.6: Boat Wake (BoatWake.lsl)

 generalParticleEmitterOn()
{
 llParticleSystem([
 PSYS_PART_FLAGS , 0
 //| PSYS_PART_BOUNCE_MASK
//Bounce on object's z-axis
 //| PSYS_PART_WIND_MASK
//Particles are moved by wind
 | PSYS_PART_INTERP_COLOR_MASK
//Colors fade from start to end
 | PSYS_PART_INTERP_SCALE_MASK
//Scale fades from beginning to end
 | PSYS_PART_FOLLOW_SRC_MASK
//Particles follow the emitter
 | PSYS_PART_FOLLOW_VELOCITY_MASK
//Particles are created at the velocity of the emitter
 //| PSYS_PART_TARGET_POS_MASK
//Particles follow the target
 | PSYS_PART_EMISSIVE_MASK
//Particles are self-lit (glow)
 //| PSYS_PART_TARGET_LINEAR_MASK
//Undocumented--Sends particles in straight line?
 ,

 //PSYS_SRC_TARGET_KEY , NULL_KEY,
//The particles will head towards the specified key
 //Select one of the following for a pattern:
 //PSYS_SRC_PATTERN_DROP Particles start at
emitter with no velocity
 //PSYS_SRC_PATTERN_EXPLODE Particles explode from
the emitter
 //PSYS_SRC_PATTERN_ANGLE Particles are emitted
in a 2-D angle
 //PSYS_SRC_PATTERN_ANGLE_CONE Particles are emitted

Scripting Recipes for Second Life154

in a 3-D cone
 //PSYS_SRC_PATTERN_ANGLE_CONE_EMPTY Particles are emitted
everywhere except for a 3-D cone

 PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_ANGLE

 ,PSYS_SRC_TEXTURE, "wake"
//UUID of the desired particle texture, or inventory name
 ,PSYS_SRC_MAX_AGE, 0.0
//Time, in seconds, for particles to be emitted. 0 = forever
 ,PSYS_PART_MAX_AGE, 4.0
//Lifetime, in seconds, that a particle lasts
 ,PSYS_SRC_BURST_RATE, 0.5
//How long, in seconds, between each emission
 ,PSYS_SRC_BURST_PART_COUNT, 6
//Number of particles per emission
 ,PSYS_SRC_BURST_RADIUS, 10.0
//Radius of emission
 ,PSYS_SRC_BURST_SPEED_MIN, 0.75
//Minimum speed of an emitted particle
 ,PSYS_SRC_BURST_SPEED_MAX, 1.5
//Maximum speed of an emitted particle
 ,PSYS_SRC_ACCEL, <0,0,0>
//Acceleration of particles each second
 ,PSYS_PART_START_COLOR, <0.85,0.85,1.0>
//Starting RGB color
 ,PSYS_PART_END_COLOR, <1,1,1>
//Ending RGB color, if INTERP_COLOR_MASK is on
 ,PSYS_PART_START_ALPHA, 0.0
//Starting transparency, 1 is opaque, 0 is transparent.
 ,PSYS_PART_END_ALPHA, 1.0
//Ending transparency
 ,PSYS_PART_START_SCALE, <2.5,1,0.0>
//Starting particle size
 ,PSYS_PART_END_SCALE, <2.5,1,0.0>
//Ending particle size, if INTERP_SCALE_MASK is on
 ,PSYS_SRC_ANGLE_BEGIN, 0 * DEG_TO_RAD
//Inner angle for ANGLE patterns
 ,PSYS_SRC_ANGLE_END, 0 * DEG_TO_RAD
//Outer angle for ANGLE patterns
 ,PSYS_SRC_OMEGA, <0.0,0.0,0.0>
//Rotation of ANGLE patterns, similar to llTargetOmega()
]);
}

generalParticleEmitterOff()

155Chapter 5: Vehicles

{
 llParticleSystem([]);
}

default
{
 state_entry()
 {
 generalParticleEmitterOff();
 }
 link_message(integer sender_num, integer num, string str,
 key id)
 {
 if(str=="stop")
 {
 generalParticleEmitterOff();
 }
 if(str=="start")
 {
 generalParticleEmitterOn();
 }
 }
}

 The boat, with a wake behind it, can be seen in Figure 5.6.

Scripting Recipes for Second Life156

 Figure 5.6: A Boat with Wake

 The wake script turns on and off as commanded by the main boat script in the root prim.
To turn the wake on, the following command is issued by the main boat script.

 llMessageLinked(LINK_ALL_CHILDREN , 0, "start", NULL_KEY);

 To turn the wake script off, the following command is issued by the main boat script.

 llMessageLinked(LINK_ALL_CHILDREN , 0, "stop", NULL_KEY);

 Both commands are issued in the changed event handler. The wake trail will begin when
the driver sits. The wake trail will end when the driver stands. This communication is done
with a linked message. A linked message is sent to all linked prims. The wake script handles
the linked message in the link_message event handler.

 link_message(integer sender_num, integer num, string str, key id)
{
 if(str=="stop")
 {
 generalParticleEmitterOff();
 }
 if(str=="start")
 {

157Chapter 5: Vehicles

 generalParticleEmitterOn();
 }
}

 If the message is to stop, the particle script is turned off. If the message is to start, the
particle script is turned on. For more information on how the particle script is constructed,
refer to Chapter 4.

 Recipe 5.3: Helicopter
 Helicopters and other fl ying vehicles are very popular in Second Life. This recipe shows

how to create a helicopter. The helicopter is capable of carrying up to four avatars at once.
The helicopter is fl own very similarly to how an avatar is fl own.

 Figure 5.7: A Helicopter

 The helicopter shares some characteristics with the car. However, there are some im-
portant differences.

 • The helicopter should roll slightly when it turns.
 • The helicopter hovers in the air.
 • The helicopter spins its rotors whenever a driver is seated.

Scripting Recipes for Second Life158

 • The helicopter uses different sounds.
 • The helicopter has no wheels to turn.
 • The helicopter can leave the ground.

 The main script for the helicopter is located in the root prim. This script is shown in
Listing 5.7.

 Listing 5.7: Helicopter Script (Helicopter.lsl)

 float forward_power = 15; //Power used to go forward (1 to 30)
float reverse_power = -15; //Power used to go reverse (-1 to -30)
float turning_ratio = 2.0; //How sharply the vehicle turns. Less
is more sharply. (.1 to 10)
string sit_message = "Ride"; //Sit message
string not_owner_message =
"You are not the owner of this vehicle ..."; //Not owner message
float VERTICAL_THRUST = 7;
float ROTATION_RATE = 2.0; // Rate of turning

resetY()
{
 rotation rot = llGetRot();
 llSetRot(rot);
}

default
{
 state_entry()
 {
 llSetSitText(sit_message);
 // forward-back,left-right,updown
 llSitTarget(<0.2,0,0.45>, ZERO_ROTATION);

 llSetCameraEyeOffset(<-8, 0.0, 5.0>);
 llSetCameraAtOffset(<1.0, 0.0, 2.0>);

 llPreloadSound("helicopter_run");

 //helicopter
 llSetVehicleType(VEHICLE_TYPE_AIRPLANE);

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0.1);
 llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0.1);
 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 10);
 llSetVehicleFloatParam(

159Chapter 5: Vehicles

VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 10);

 llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_TIMESCALE, 0.2);
 llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 10);
 llSetVehicleFloatParam(
VEHICLE_ANGULAR_MOTOR_TIMESCALE, 0.2);
 llSetVehicleFloatParam(
VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 0.1);

 llSetVehicleVectorParam(
VEHICLE_LINEAR_FRICTION_TIMESCALE, <1,1,1>);
 llSetVehicleVectorParam(
VEHICLE_ANGULAR_FRICTION_TIMESCALE, <1,1000,1000>);

 llSetVehicleFloatParam(
VEHICLE_BUOYANCY, 0.9);

 llSetVehicleFloatParam(
VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 1);
 llSetVehicleFloatParam(
VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 2);

 llSetVehicleFloatParam(VEHICLE_BANKING_EFFICIENCY, 1);
 llSetVehicleFloatParam(VEHICLE_BANKING_MIX, 0.5);
 llSetVehicleFloatParam(VEHICLE_BANKING_TIMESCALE, .5);

 }

 changed(integer change)
 {

 if (change & CHANGED_LINK)
 {

 key agent = llAvatarOnSitTarget();
 if (agent)
 {
 if (agent != llGetOwner())
 {
 llSay(0, not_owner_message);
 llUnSit(agent);
 llPushObject(agent, <0,0,50>,

Scripting Recipes for Second Life160

 ZERO_VECTOR, FALSE);
 }
 else
 {
 llMessageLinked(LINK_ALL_CHILDREN , 0,
 "start", NULL_KEY);

 llSleep(.4);
 llSetStatus(STATUS_PHYSICS, TRUE);
 llSetStatus(STATUS_ROTATE_Y,TRUE);
 llSleep(.1);
 llRequestPermissions(agent,
PERMISSION_TRIGGER_ANIMATION | PERMISSION_TAKE_CONTROLS);

 llLoopSound("helicopter_run",1);
 }
 }
 else
 {
 llStopSound();
 llMessageLinked(LINK_ALL_CHILDREN , 0, "stop",
 NULL_KEY);

 llSetStatus(STATUS_PHYSICS, FALSE);
 llSleep(.4);
 llReleaseControls();
 llTargetOmega(<0,0,0>,PI,0);

 llResetScript();
 }
 }

 }

 run_time_permissions(integer perm)
 {
 if (perm) {
 llTakeControls(CONTROL_FWD | CONTROL_BACK |
 CONTROL_RIGHT | CONTROL_LEFT | CONTROL_ROT_RIGHT |
 CONTROL_ROT_LEFT | CONTROL_UP | CONTROL_DOWN,
 TRUE, FALSE);
 }
 }

 control(key id, integer level, integer edge)
 {

161Chapter 5: Vehicles

 vector angular_motor;

 // going forward, or stop going forward
 if(level & CONTROL_FWD)
 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION,
 <forward_power,0,0>);
 } else if(edge & CONTROL_FWD)
 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
 }

 // going back, or stop going back
 if(level & CONTROL_BACK)
 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION,
 <reverse_power,0,0>);
 }
 else if(edge & CONTROL_BACK)
 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
 }

 // turning
 if(level & (CONTROL_RIGHT|CONTROL_ROT_RIGHT))
 {
 angular_motor.x += 25;
 }

 if(level & (CONTROL_LEFT|CONTROL_ROT_LEFT))
 {
 angular_motor.x -= 25;
 }

 // going up or stop going up
 if(level & CONTROL_UP) {
 llSetVehicleVectorParam(VEHICLE_LINEAR_MOTOR_DIREC-
TION, <0,0,VERTICAL_THRUST>);
 } else if (edge & CONTROL_UP) {

Scripting Recipes for Second Life162

 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
 }

 // going down or stop going down

 if(level & CONTROL_DOWN) {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION,
 <0,0,-VERTICAL_THRUST>);
 } else if (edge & CONTROL_DOWN) {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
 }

 angular_motor.y = 0;
 llSetVehicleVectorParam(
 VEHICLE_ANGULAR_MOTOR_DIRECTION, angular_motor);
 } //end control
} //end default

 The next few sections will examine helicopter script in detail.

 Initializing the Helicopter

 The helicopter, like the car, is initialized in the state_entry event handler. First,
the vehicle type is set to airplane. Airplane includes all air-based vehicles. For more informa-
tion on airplane parameters refer to Tables 5.1, 5.2 and 5.3.

 llSetVehicleType(VEHICLE_TYPE_AIRPLANE);

 Angular defl ection is the tendency of a vehicle to move in certain directions. The angular
defl ection effi ciency determines how effective angular defl ection is. A value of 0.1 specifi es
angular defl ection at 10%. This allows the helicopter to turn fairly easily.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0.1);

 A value of 0.1 specifi es that linear defl ection has 10% power. This means it takes little ef-
fort for the helicopter to change its linear velocity.

 llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0.1);

 It will take ten seconds for angular defl ection to reach full effect.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 10);
llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 10);

163Chapter 5: Vehicles

 It will take one fi fth of a second for the linear motor to reach full power.

 llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_TIMESCALE, 0.2);

 It takes ten seconds for the linear motor to drop from full power. However, the controls
for the helicopter will stop the linear motor if the direction of the helicopter is changed. This
makes the helicopter easier to control. Because of this, the linear motor may not always have
a full ten seconds to slow down.

 llSetVehicleFloatParam(
VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 10);

 It takes one fi fth of a second for the angular motor to reach full power.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_MOTOR_TIMESCALE, 0.2);

 It takes one tenth of a second for the angular motor's power to drop off. This causes the
helicopter to stop turning quickly.

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 0.1);

 There is little friction in any of the three directions.

 llSetVehicleVectorParam(
VEHICLE_LINEAR_FRICTION_TIMESCALE, <1,1,1>);

 There is little angular friction in the x and z coordinate systems.

 llSetVehicleVectorParam(
VEHICLE_ANGULAR_FRICTION_TIMESCALE, <1,1000,1000>);

 The helicopter is slightly heavier than air. It will sink very slowly when hovering. It will
also be able to sit on the ground without fl oating away.

 llSetVehicleFloatParam(
VEHICLE_BUOYANCY, 0.9);

 The helicopter should stay right-side up. The following vertical attraction values ensure
this.

 llSetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY,
1);
llSetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_TIMESCALE,
2);

 The helicopter will turn quickly once banked.

 llSetVehicleFloatParam(
VEHICLE_BANKING_EFFICIENCY, 1);

Scripting Recipes for Second Life164

 The helicopter banking mix is 50% realistic. This means that the helicopter does not
necessarily need to be in motion to turn.

 llSetVehicleFloatParam(
VEHICLE_BANKING_MIX, 0.5);

 It takes half a second for the bank to translate into a turn.

 llSetVehicleFloatParam(
VEHICLE_BANKING_TIMESCALE, .5);

 These values produce a helicopter that is steady and easy to control.

 Controlling the Helicopter

 The helicopter is controlled differently to the car. To begin with, the helicopter must
bank to turn. The car simply turns. Also, the helicopter must detect when the up/down and
forward/backward controls are released. Otherwise, the helicopter would continue in those
directions and be diffi cult to control. Finally, the helicopter can go up and down, whereas the
car stays on the ground.

 The control event handler begins by checking to see whether the user is applying
forward pressure to the helicopter controls. If this is the case, apply power to the linear mo-
tor to go forward.

 // going forward, or stop going forward
if(level & CONTROL_FWD)
{
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <forward_power,0,0>);

 If the user recently ceased applying forward pressure to the helicopter controls, stop the
linear motor.

 } else if(edge & CONTROL_FWD)
{
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
}

 Next, the control event handler checks to see whether the user is applying backward
pressure to the helicopter controls. If so, apply backward power to make the linear motor go
backward.

 // going back, or stop going back
if(level & CONTROL_BACK)
{
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <reverse_power,0,0>);
}

165Chapter 5: Vehicles

 If the user recently ceased applying backward pressure to the helicopter controls, stop
the linear motor.

 else if(edge & CONTROL_BACK)
{
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
}

 If the user is turning to the right, apply positive power to the angular motor in the x coor-
dinate system. This rolls the helicopter to the right.

 // turning
if(level & (CONTROL_RIGHT|CONTROL_ROT_RIGHT))
{
 angular_motor.x += 25;
}

 If the user is turning to the left, apply negative power to the angular motor in the x coor-
dinate system. This rolls the helicopter to the left.

 if(level & (CONTROL_LEFT|CONTROL_ROT_LEFT))
{
 angular_motor.x -= 25;
}

 Next, the control event handler checks to see whether the user is applying upward pres-
sure to the helicopter controls. If so, apply upward power to the linear motor to make it go
upwards.

 // going up or stop going up
if(level & CONTROL_UP)
{
 llSetVehicleVectorParam(
VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,VERTICAL_THRUST>);

 If the user recently ceased applying upward pressure to the helicopter controls, stop the
linear motor.

 } else if (edge & CONTROL_UP) {
 llSetVehicleVectorParam(
VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
}

 Next the control event handler checks to see whether the user is applying downward
pressure to the helicopter controls. If so, apply downward power to the linear motor to make
it go downwards.

 // going down or stop going down

Scripting Recipes for Second Life166

if(level & CONTROL_DOWN)
{
 llSetVehicleVectorParam(
VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,-VERTICAL_THRUST>);

 If the user has recently ceased applying upward pressure to the helicopter controls, stop
the linear motor.

 } else if (edge & CONTROL_DOWN) {
 llSetVehicleVectorParam(
VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
}

 Finally, apply the correct power to the angular motor.

 angular_motor.y = 0;
llSetVehicleVectorParam(
VEHICLE_ANGULAR_MOTOR_DIRECTION, angular_motor);

 The control system for an air vehicle is different to a land or sea vehicle.

 Spinning the Rotors

 The helicopter has a spinning rotor, similar to a real helicopter. This blade is turned on
and off by the main helicopter script's changed event handler. To start the rotor, use this
command.

 llMessageLinked(LINK_ALL_CHILDREN , 0, "start", NULL_KEY);

 To stop the rotor, use this command.

 llMessageLinked(LINK_ALL_CHILDREN , 0, "stop", NULL_KEY);

 The script that drives the rotor is shown in Listing 5.8.

 Listing 5.8: Helicopter Rotors (Blade.lsl)

 float rad = 0.0;
float radinc = 0.05;
float time_inc = .2;
float rotspeed = 3.2;

default
{

 state_entry()
 {
 llSetTextureAnim(0, ALL_SIDES, 0, 0, 0, 0, 0);
 }

 link_message(integer sender_num, integer num, string str,

167Chapter 5: Vehicles

 key id)
 {
 if(str=="stop")
 {
 llSetTextureAnim(0, ALL_SIDES, 0, 0, 0, 0, 0);
 }
 if(str=="start")
 {
 llSetTextureAnim(ANIM_ON | ROTATE | LOOP |
 SMOOTH, ALL_SIDES, 0, 0, 0, 100, 20);
 }
 }

}

 The rotor script does most of its work inside of the link_message event handler.

 link_message(integer sender_num, integer num, string str, key id)
{
 if(str=="stop")
 {
 llSetTextureAnim(0, ALL_SIDES, 0, 0, 0, 0, 0);
 }
 if(str=="start")
 {
 llSetTextureAnim(ANIM_ON | ROTATE | LOOP
 |SMOOTH, ALL_SIDES, 0, 0, 0, 100, 20);
 }
}

 When the event handler receives the message “stop”, the rotor animation is stopped.
When the event handler receives the message “start” the animation starts.

 Recipe 5.4: Super Car
 The last recipe in this chapter is a super car. The super car combines aspects from the

previous three recipes. The super car can function as a car, a boat or a helicopter. By talk-
ing to the super car, the vehicle parameters can be switched out between any of the previous
three vehicles. The super car looks very similar to the regular car, except that it is yellow.

 The script for the root prim of the Super Car is shown in Listing 5.9.

 Listing 5.9: The Super Car (SuperCar.lsl)

 float forward_power = 15; //Power used to go forward (1 to 30)
float reverse_power = -15; //Power used to go reverse (-1 to -30)
float turning_ratio = 2.0; //How sharply the vehicle turns. Less
is more sharply. (.1 to 10)

Scripting Recipes for Second Life168

string sit_message = "Ride"; //Sit message
string not_owner_message = "You are not the owner of this vehicle
..."; //Not owner message
float VERTICAL_THRUST = 7;

float ROTATION_RATE = 2.0; // Rate of turning

becomeBoat()
{
 llSetVehicleType(VEHICLE_TYPE_BOAT);
 llSetVehicleFlags(VEHICLE_FLAG_HOVER_UP_ONLY | VEHICLE_FLAG_
HOVER_WATER_ONLY);
 llRemoveVehicleFlags(VEHICLE_FLAG_HOVER_TERRAIN_ONLY
 | VEHICLE_FLAG_LIMIT_ROLL_ONLY
 | VEHICLE_FLAG_HOVER_GLOBAL_HEIGHT);
 llSetVehicleVectorParam(VEHICLE_LINEAR_FRICTION_TIMESCALE,
 <1, 1, 1>);
 llSetVehicleFloatParam(VEHICLE_ANGULAR_FRICTION_TIMESCALE,
 2);

 llSetVehicleVectorParam(VEHICLE_LINEAR_MOTOR_DIRECTION,
 <0, 0, 0>);
 llSetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_TIMESCALE, 1);
 llSetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE,
 0.05);

 llSetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_TIMESCALE, 1);
 llSetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE,
 5);
 llSetVehicleFloatParam(VEHICLE_HOVER_HEIGHT, 0.15);
 llSetVehicleFloatParam(VEHICLE_HOVER_EFFICIENCY,.5);
 llSetVehicleFloatParam(VEHICLE_HOVER_TIMESCALE, 2.0);
 llSetVehicleFloatParam(VEHICLE_BUOYANCY, 1);
 llSetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_EFFICIENCY,
 0.5);
 llSetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_TIMESCALE,
 3);
 llSetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY,
 0.5);
 llSetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_TIMESCALE,
 10);
 llSetVehicleFloatParam(
 VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 0.5);
 llSetVehicleFloatParam(
 VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 2);
 llSetVehicleFloatParam(VEHICLE_BANKING_EFFICIENCY, 1);

169Chapter 5: Vehicles

 llSetVehicleFloatParam(VEHICLE_BANKING_MIX, 0.1);
 llSetVehicleFloatParam(VEHICLE_BANKING_TIMESCALE, .5);
 llSetVehicleRotationParam(VEHICLE_REFERENCE_FRAME,
 ZERO_ROTATION);
}

becomeCar()
{
 //car
 llSetVehicleType(VEHICLE_TYPE_CAR);
 llSetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY,
 0.2);
 llSetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_EFFICIENCY,
 0.80);
 llSetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_TIMESCALE,
 0.10);
 llSetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_TIMESCALE,
 0.10);
 llSetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_TIMESCALE, 1.0);
 llSetVehicleFloatParam(
 VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 0.2);
 llSetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_TIMESCALE, 0.1);
 llSetVehicleFloatParam(
 VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 0.5);
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_FRICTION_TIMESCALE,
 <1000.0, 2.0, 1000.0>);
 llSetVehicleVectorParam(VEHICLE_ANGULAR_FRICTION_TIMESCALE,
<10.0, 10.0, 1000.0>);
 llSetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY,
0.50);
 llSetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_TIMESCALE,
0.50);
}

becomePlane()
{
 llSetVehicleType(VEHICLE_TYPE_AIRPLANE);

 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0.1);
 llSetVehicleFloatParam(
VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0.1);
 llSetVehicleFloatParam(
VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 10);
 llSetVehicleFloatParam(

Scripting Recipes for Second Life170

VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 10);

 llSetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_TIMESCALE,
 0.2);
 llSetVehicleFloatParam(
 VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 10);
 llSetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_TIMESCALE,
 0.2);
 llSetVehicleFloatParam(
 VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 0.1);

 llSetVehicleVectorParam(VEHICLE_LINEAR_FRICTION_TIMESCALE,
 <5,5,5>);
 llSetVehicleVectorParam(VEHICLE_ANGULAR_FRICTION_TIMESCALE,
 <1,1,1>);

 llSetVehicleFloatParam(VEHICLE_BUOYANCY, 1.0);

 llSetVehicleFloatParam(
 VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 0.2);
 llSetVehicleFloatParam(
 VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 3.0);

 llSetVehicleFloatParam(VEHICLE_BANKING_EFFICIENCY, 1);
 llSetVehicleFloatParam(VEHICLE_BANKING_MIX, 0.1);
 llSetVehicleFloatParam(VEHICLE_BANKING_TIMESCALE, .5);
}

default
{
 state_entry()
 {
 llSetSitText(sit_message);
 // forward-back,left-right,updown
 llSitTarget(<0.2,0,0.45>, ZERO_ROTATION);

 llSetCameraEyeOffset(<-8, 0.0, 5.0>);
 llSetCameraAtOffset(<1.0, 0.0, 2.0>);

 llPreloadSound("car_start");
 llPreloadSound("car_run");

 llListen(0, "", NULL_KEY, "");

 becomeCar();
 }

171Chapter 5: Vehicles

 listen(integer channel, string name, key id, string message)
 {
 if(id==llGetOwner())
 {
 if(message == "drive")
 becomeCar();
 else if (message == "fly")
 becomePlane();
 else if (message == "float")
 becomeBoat();
 }
 }

 changed(integer change)
 {

 if (change & CHANGED_LINK)
 {

 key agent = llAvatarOnSitTarget();
 if (agent)
 {
 if (agent != llGetOwner())
 {
 llSay(0, not_owner_message);
 llUnSit(agent);
 llPushObject(agent, <0,0,50>,
 ZERO_VECTOR, FALSE);
 }
 else
 {
 llTriggerSound("car_start",1);

 llSay(0,"Welcome to the super car, say 'drive'
to make me a car, 'fly' to make me fly, or 'float' to make me a
boat.");
 llSleep(.4);
 llSetStatus(STATUS_PHYSICS, TRUE);
 llSleep(.1);
 llRequestPermissions(agent, PERMISSION_TRIG-
GER_ANIMATION | PERMISSION_TAKE_CONTROLS);

 llLoopSound("car_run",1);

Scripting Recipes for Second Life172

 }
 }
 else
 {
 llStopSound();

 llSetStatus(STATUS_PHYSICS, FALSE);
 llSleep(.4);
 llReleaseControls();
 llTargetOmega(<0,0,0>,PI,0);

 llResetScript();
 }
 }

 }

 run_time_permissions(integer perm)
 {
 if (perm) {
 llTakeControls(CONTROL_FWD | CONTROL_BACK |
 CONTROL_RIGHT | CONTROL_LEFT |
 CONTROL_ROT_RIGHT | CONTROL_ROT_LEFT |
 CONTROL_UP | CONTROL_DOWN, TRUE, FALSE);
 }
 }

 control(key id, integer level, integer edge)
 {
 integer reverse=1;
 vector angular_motor;

 //get current speed
 vector vel = llGetVel();
 float speed = llVecMag(vel);

 //car controls
 if(level & CONTROL_FWD)
 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION,
 <forward_power,0,0>);
 reverse=1;
 }
 if(level & CONTROL_BACK)

173Chapter 5: Vehicles

 {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION,
 <reverse_power,0,0>);
 reverse = -1;
 }

 if(level & (CONTROL_RIGHT|CONTROL_ROT_RIGHT))
 {
 angular_motor.z -= turning_ratio;
 }

 if(level & (CONTROL_LEFT|CONTROL_ROT_LEFT))
 {
 angular_motor.z += turning_ratio;
 }

 if(level & CONTROL_UP) {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION,
 <0,0,VERTICAL_THRUST>);
 } else if (edge & CONTROL_UP) {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
 }
 if(level & CONTROL_DOWN) {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION,
 <0,0,-VERTICAL_THRUST>);
 } else if (edge & CONTROL_DOWN) {
 llSetVehicleVectorParam(
 VEHICLE_LINEAR_MOTOR_DIRECTION, <0,0,0>);
 }

 llSetVehicleVectorParam(VEHICLE_ANGULAR_MOTOR_DIRECTION,
 angular_motor);

 }

}

 The super car has three functions used to set vehicle parameters. They are:

 • Become Boat
 • Become Car

Scripting Recipes for Second Life174

 • Become Plane

 The driver can easily switch between the three by talking to the car. By saying “drive”
the car becomes a car. By saying “fl oat” the car becomes a boat. Finally, by saying “fl y” the
car becomes a fl ying machine. The car starts out in drive mode.

 The switch is handled inside of the listen event handler.

 Summary
 Vehicles are a popular part of Second Life. This chapter provided recipes that demon-

strate land, air and sea vehicles. By setting the vehicle parameter types, the vehicle type and
handling characteristics can be specifi ed. There are two very important event handlers in
most vehicles.

 The changed event handler is called when an avatar sits on a vehicle. The changed
event handler must fi rst determine whether the avatar is authorized to operate the vehicle.
Normally, to operate the vehicle, the avatar must be the owner. Next, the event handler starts
the vehicle.

 The control event handler is called when the avatar applies pressure to the controls of
the vehicle. Normally, a vehicle is moved in the same way as an avatar. The control event
handler must process all of the movement requests and apply power to the linear and angular
motors.

 The next chapter will introduce recipes for scanners. Scanners can detect avatars around
the scanning device. Other types of scanners also gather information about their environ-
ment.

175Chapter 5: Vehicles

Scripting Recipes for Second Life176

177Chapter 6: Scanners

 CHAPTER 6: SCANNERS

 • Create a Radar
 • Automatically Giving Notecards
 • Automatic Doors
 • Monitoring Traffi c

 Scripts can be aware of their environment. Using a scanner, a script can detect avatars and
other objects around it. To sense the presence of an avatar or other object, the llSensor
or llSensorRepeat functions are used. The llSensor function scans just once,
whereas the llSensorRepeat function scans at regular intervals.

 The llSensor function is called with the following parameters.

 llSensor(string name, key id, integer type, float range, float
arc)

 The parameter name allows the sensor to look only for objects that match the specifi ed
name. If name is an empty string, all objects will be scanned. The id parameter allows
the scanner to specify which objects will be scanned using a key. The value of NULL_KEY
specifi es all objects.

 The parameter type specifi es the type of scan. The valid types can be combined with
the logical or (|) operator. These values are summarized in Table 6.1.

 Table 6.1: Scan Types

Flag Purpose
AGENT Agents/avatars (users).
ACTIVE Physical objects that are moving or objects containing an active script.
PASSIVE Non-scripted or script is inactive and non-physical or, if physical, not

moving.
SCRIPTED Objects containing an active script.

 The parameter range specifi es how many meters out the scanner should scan. A value
of zero will not scan. The parameter arc specifi es the arc, in radians, the scanner should
scan. Specify a value of PI radians to scan in all directions. For example, to scan for every
agent, within 96 meters of the scanner, use the following command:

 llSensor("", "",AGENT, 96, PI)

Scripting Recipes for Second Life178

 Usually an object will want to scan at regular intervals. The above command could be
performed every second with the following command:

 llSensorRepeat("", "",AGENT, 96, PI, 1)

 Notice the additional parameter of one at the end of the command? This specifi es a scan
is required every second. If an avatar or object is detected by either scan, the sensor
event handler will be called. This event handler is shown here.

 sensor(integer num_detected)

 If nothing was found, the no_sensor event handler is called.

 no_sensor()

 This chapter demonstrates four recipes that make use of sensors. The fi rst recipe is a
radar that detects avatars.

 Recipe 6.1: Avatar Radar
 Radars are a common gadget in Second Life. A nearby radar will report all avatars in

the area. The radar presented in this recipe lists all nearby avatars, and their distances, just
above the radar. The radar can be seen in Figure 6.1.

179Chapter 6: Scanners

 Figure 6.1: Avatar Radar

 The script needed to produce this radar is shown in Listing 6.1.

 Listing 6.1: Avatar Radar (Radar.lsl)

 integer freq = 1;

default
{
 state_entry()
 {
 llSensorRepeat("", "",AGENT, 96, PI, freq);
 }

 sensor(integer num_detected)
 {
 integer i;
 string name;
 integer distance;
 string result = "";
 list data = [];

Scripting Recipes for Second Life180

 vector pos = llGetPos();

 for(i=0;i<num_detected;i++)
 {
 name = llKey2Name(llDetectedKey(i));
 vector detPos = llDetectedPos(i);
 distance = (integer)llVecDist(pos, detPos);
 data += distance;
 data += name;
 }

 llListSort(data,2,FALSE);

 integer listLength = llGetListLength(data);
 for(i=0;i<listLength;i+=2)
 {
 distance = llList2Integer(data,i);
 name = llList2String(data,i+1);

 result = result + name + " [" +
 (string)distance + "m]\n";
 }

 llSetText(result,<1,1,1>,1);
 }
}

 This script begins by defi ning a variable, named freq , to hold the scanning frequency.
For the radar, the scanning frequency is one second.

 integer freq = 1;

 When the script starts, a repeating sensor is created to scan for Avatars up to 96 meters
away.

 state_entry()
{
 llSensorRepeat("", "",AGENT, 96, PI, freq);
}

 Nearly all of the work performed by this script is performed inside of the sensor event
handler. First, certain variables are defi ned that will be used by the event handler.

 sensor(integer num_detected)
{
 integer i;
 string name;
 integer distance;

181Chapter 6: Scanners

 string result = "";
 list data = [];

 First, the current position of the radar is obtained. This is used to calculate the distance
that each avatar is at.

 vector pos = llGetPos();

 All detected avatars are looped through.

 for(i=0;i<num_detected;i++)
 {
 name = llKey2Name(llDetectedKey(i));
 vector detPos = llDetectedPos(i);
 distance = (integer)llVecDist(pos, detPos);

 The name and distance is obtained for each avatar. The name and distance are stored as
pairs into the data list.

 data += distance;
 data += name;
 }

 Next the list is sorted. A span of two is specifi ed because the list contains pairs. Each
pair is made up of the name and distance.

 llListSort(data,2,FALSE);

 Now that the list has been sorted, it must be displayed. Loop through each pair in the
list, and extract the name and distance. Add the results to the result string.

 integer listLength = llGetListLength(data);
 for(i=0;i<listLength;i+=2)
 {
 distance = llList2Integer(data,i);
 name = llList2String(data,i+1);

 result = result + name + " ["
 + (string)distance + "m]\n";
 }

 Once the loop completes, display the completed list.

 llSetText(result,<1,1,1>,1);
}

 This radar will continue indefi nitely scanning for nearby avatars. Radars can be useful
for tracking which avatars are nearby. Specifi c actions can be performed when avatars ap-
proach. The next two recipes demonstrate this.

Scripting Recipes for Second Life182

 Recipe 6.2: Notecard Giver
 Notecard givers are very common in Second Life. When an avatar appears at a new loca-

tion, the avatar will often be given a notecard. This notecard explains the rules for the area,
or other important information. Figure 6.2 shows an avatar being given a notecard.

 Figure 6.2: Notecard Giver

 The script necessary to create the notecard giver is shown in Listing 6.2.

 Listing 6.2: Notecard Giver (NotecardGiver.lsl)

 string notecard = "Welcome Notecard";
integer freq = 1;
integer maxList = 100;
list given;

default
{
 state_entry()
 {
 llSensorRepeat("", "",AGENT, 20, PI, freq);

183Chapter 6: Scanners

 llSetText("", <1.0, 1.0, 1.0>, 1.0);
 }

 sensor(integer num_detected)
 {
 integer i;
 key detected;

 for(i=0;i<num_detected;i++)
 {
 detected = llDetectedKey(i);

 if(llListFindList(given, [detected]) < 0)
 {
 given += llDetectedKey(i);

 llGiveInventory(detected, notecard);
 if (llGetListLength(given) >= maxList)
 {
 given = llDeleteSubList(given,0,10);
 }
 }
 }
 }
}

 First, several variables are created that defi ne how the notecard giver will operate. The
name of the notecard must be defi ned. In this case, it is “Welcome Notecard”. For the script
to operate properly, a notecard, named “Welcome Notecard” is required in the object inven-
tory of the notecard giver object. Additionally, a frequency of one second is specifi ed. Every
second, the notecard giver looks for new avatars.

 It is important that the notecard giver does not keep giving the same avatars the same
notecards. This quickly becomes annoying to the avatars. To achieve this, a list of the last
100 avatars is kept. This ensures that the same avatar does not immediately get the same
notecard. Of course, if 100 other avatars visit after an avatar is given a notecard, that avatar
will be given the notecard again, if he returns.

 string notecard = "Welcome Notecard";
integer freq = 1;
integer maxList = 100;
list given;

 When the script starts, a repeating sensor is created at the specifi ed frequency.

 state_entry()
{
 llSensorRepeat("", "",AGENT, 20, PI, freq);

Scripting Recipes for Second Life184

}

 The sensor event handler is called once a second, by default, and is responsible for
distributing the notecards.

 sensor(integer num_detected)
{
 integer i;
 key detected;

 The event handler loops across all avatars that were detected.

 for(i=0;i<num_detected;i++)
 {
 detected = llDetectedKey(i);

 The key for each detected avatar is obtained. This key is added to the given list, if the key
is not already present in the list.

 if(llListFindList(given, [detected]) < 0)
 {
 given += llDetectedKey(i);

 llGiveInventory(detected, notecard);

 If the list has exceeded 100 avatars, shrink the list by 10. The function
 llGiveInventory allows inventory objects, in this case a notecard, to be given. Any
item could be substituted here.

 if (llGetListLength(given) >= maxList)
 {
 given = llDeleteSubList(given,0,10);
 }

 This prevents the list from growing to an unmanageable length, and ensures that avatars
are not given the same notecard too often.

 Recipe 6.3: Automatic Door
 Recipe 3.2 showed how to create a simple door. This door opens when an avatar touches

it. This recipe builds on Recipe 3.2 by creating a door that automatically opens as the user
approaches that door. Figure 6.3 shows the automatic door in action.

185Chapter 6: Scanners

 Figure 6.3: Automatic Door

 The script necessary to produce the automatic door is shown in Listing 6.3.

 Listing 6.3: Automatic Door (AutoDoor.lsl)

 float TIMER_CLOSE = 5.0;
integer DIRECTION = -1;
// direction door opens in. Either 1 (outwards) or -1 (inwards);

integer DOOR_OPEN = 1;
integer DOOR_CLOSE = 2;

vector originalPos;

door(integer what)
{
 rotation rot;
 rotation delta;
 vector eul;

 llSetTimerEvent(0);

Scripting Recipes for Second Life186

 if (what == DOOR_OPEN)
 {
 llTriggerSound("doorOpen", 1);
 eul = <0, 0, 90*DIRECTION>; //90 degrees around the z-
axis, in Euler form

 } else if (what == DOOR_CLOSE)
 {
 llTriggerSound("doorClose", 1);
 eul = <0, 0, 90*-DIRECTION>; //90 degrees around the z-
axis, in Euler form
 }

 eul *= DEG_TO_RAD; //convert to radians rotation
 rot = llGetRot();
 delta = llEuler2Rot(eul);
 rot = delta * rot;
 llSetRot(rot);
}

default
{
 on_rez(integer start_param)
 {
 llResetScript();
 }

 state_entry()
 {
 originalPos = llGetPos();
 llSensorRepeat("", "",AGENT, 5, PI, 1);
 }

 sensor(integer num_detected)
 {
 door(DOOR_OPEN);
 state open_state;
 }

 moving_end()
 {
 originalPos = llGetPos();
 }
}

187Chapter 6: Scanners

state open_state
{
 state_entry()
 {
 llSensorRepeat("", "",AGENT, 5, PI, 1);
 }

 no_sensor()
 {
 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state default;
 }

 sensor(integer num_detected)
 {
 }

 moving_start()
 {
 door(DOOR_CLOSE);
 state default;
 }
}

 Few changes are required to Recipe 3.2 to create an automatic door. The mechanics of
opening and closing the door are not explained in this recipe. For more information on that
topic, refer to Recipe 3.2 in Chapter 3.

 To automatically open the door, a simple sensor is used. This sensor moves the door to
an opened state whenever it is called.

 sensor(integer num_detected)
 {
 door(DOOR_OPEN);
 state open_state;
 }

 This sensor will be called when any avatar approaches the door.

 Recipe 6.4: Traffi c Scanner
 Traffi c scanners are popular in Second Life. Traffi c scanners perform a variety of tasks

and provide a variety of statistics. The traffi c scanner presented in this chapter counts the
number of visitors per day. At the end of the day (midnight) the traffi c scanner will Instant
Message (IM) a visitor count to its owner.

Scripting Recipes for Second Life188

 Additionally, the traffi c scanner reports a complete list of avatars that have visited for the
day. To see this list of avatars, simply touch the traffi c scanner. Figure 6.4 shows the traffi c
scanner reporting all unique visitors for a day.

 Figure 6.4: Traffi c Scanner

 The script necessary to produce the traffi c scanner is shown in Listing 6.4.

 Listing 6.4: Traffi c Scanner (Traffi cScanner.lsl)

 list known;
string parcelName;

integer DAYSEC = 86400;
integer visitorsYesterday;

setTimer()
{
 float now = llGetWallclock();
 integer secondsLeft = (DAYSEC - (integer)now);
 llSetTimerEvent(secondsLeft);
}

189Chapter 6: Scanners

default
{
 on_rez(integer i)
 {
 llResetScript();
 }

 state_entry()
 {
 llSensorRepeat("", "", AGENT, 20.0, PI, 1.0);
 list lstParcelDetails = [PARCEL_DETAILS_NAME];

 list lstParcelName=llGetParcelDetails(llGetPos(),
 lstParcelDetails);

 parcelName =(string)lstParcelName;
 setTimer();
 }

 sensor(integer detected)
 {
 integer i;

 // Say the names of everyone the sensor detects
 for(i=0;i<detected;i++)
 {
 string name = llDetectedName(i);

 if(llListFindList(known,[name]) == -1)
 {
 llSay(0,"Hello " + name + " welcome to " +
 parcelName + ".");
 known += [name];
 }
 }
 }

 touch_start(integer total_number)
 {
 key owner = llGetOwner();
 key who = llDetectedKey(0);
 if(who==owner)
 {
 llSay(0, "Number of unique visitors today: " +
 (string)llGetListLength(known));

Scripting Recipes for Second Life190

 llSay(0, "Number of unique visitors yesterday: "
 + (string)visitorsYesterday);
 string l = llList2CSV(known);
 llSay(0,"Visitors today:" + l);
 }
 }

 timer()
 {
 llSleep(60);
 visitorsYesterday = llGetListLength(known);
 setTimer();
 known = [];
 llInstantMessage(llGetOwner(),"You had "
 + (string)visitorsYesterday + " today at "
 + parcelName);
 }
}

 The traffi c scanner begins by defi ning variables that will be used by the script. The list
named known keeps track of the avatars that have visited today. This prevents a returning
avatar from being double counted. Next, the name of the land that the traffi c counter is on is
obtained. This is used when the traffi c counter welcomes the avatar. The number of seconds
in a day is defi ned so it is possible to know how long until midnight.

 list known;
string parcelName;

integer DAYSEC = 86400;
integer visitorsYesterday;

 These variables will be used by the entire script.

 Setting Up the Traffi c Scanner

 The traffi c scanner resets the script when it is rezzed. This makes sure the countdown to
midnight is set correctly and no data is held from the last location of the scanner.

 default
{
 on_rez(integer i)
 {
 llResetScript();
 }

 A repeating sensor is created that scans for avatars. The name of the parcel is also ob-
tained.

191Chapter 6: Scanners

 state_entry()
 {
 llSensorRepeat("", "", AGENT, 20.0, PI, 1.0);
 list lstParcelDetails = [PARCEL_DETAILS_NAME];

 list lstParcelName=llGetParcelDetails(llGetPos(),
 lstParcelDetails);

 parcelName =(string)lstParcelName;
 setTimer();
 }

 Calling the setTimer function causes a timer to be set that will occur just after mid-
night. The setTimer function will be explained later in this recipe.

 Detecting Avatars

 All new avatars are detected inside of the sensor event handler.

 sensor(integer detected)
 {
 integer i;

 The sensor event handler begins by looping across all detected avatars. If the avatar is
not already in the list, that avatar is added. The traffi c script also says “Hello” to each of the
new avatars.

 // Say the names of everyone the sensor detects
 for(i=0;i<detected;i++)
 {
 string name = llDetectedName(i);

 if(llListFindList(known,[name]) == -1)
 {
 llSay(0,"Hello " + name + " welcome to "
 + parcelName + ".");
 known += [name];
 }
 }
 }

 The list grows as new avatars visit during the day.

Scripting Recipes for Second Life192

 Displaying a List of Avatars

 It is interesting to see the list of avatar names who have visited your area. Touching
the traffi c scanner displays this list. This is done by converting the visitor list to a string to
display.

 touch_start(integer total_number)
 {
 key owner = llGetOwner();
 key who = llDetectedKey(0);
 if(who==owner)
 {
 llSay(0, "Number of unique visitors today: "
 + (string)llGetListLength(known));
 llSay(0, "Number of unique visitors yesterday: "
 + (string)visitorsYesterday);
 string l = llList2CSV(known);
 llSay(0,"Visitors today:" + l);
 }
 }

 The owner of the traffi c scanner is the only one allowed to display this list.

 How Long Until Midnight

 The list of known avatars is cleared out once a day. This occurs just after midnight. To
do this, the script must calculate how many seconds until midnight, and then set a timer for
that amount of time.

 setTimer()
{
 float now = llGetWallclock();
 integer secondsLeft = (DAYSEC - (integer)now);
 llSetTimerEvent(secondsLeft);
}

 To do this, the number of seconds since midnight is subtracted from the number of sec-
onds in a day. A timer is set for that amount of time.

 Resetting at Midnight

 The traffi c script should clear its list of known avatars just after midnight. This is done
when the timer event handler is called. First, the event handler waits a minute to ensure
that midnight has passed.

 timer()
 {
 llSleep(60);
 visitorsYesterday = llGetListLength(known);
 setTimer();

193Chapter 6: Scanners

 known = [];
 llInstantMessage(llGetOwner(),"You had "
 + (string)visitorsYesterday + " today at "
 + parcelName);
 }
}

 Next, the count of visitors for yesterday is updated. The timer is set for the next mid-
night, which will be 24 hours ahead. Finally, a message is sent to the owner indicating how
many people have visited.

 Summary
 This chapter showed how a script can be aware of its environment. This is done using

scanners. Scanners allow a script to be notifi ed whenever avatars or objects come into con-
tact with it.

 This chapter introduced four recipes that work with scanners. A radar shows the avatars
that are nearby. A welcome card giver hands out welcome cards to avatars as they teleport
in. An automatic door opens as soon as an avatar approaches. Finally, a traffi c counter is
provided to track who visits your land.

 The next chapter introduces several miscellaneous scripting techniques that do not fi t
into the other chapters. Techniques for working with the weather are shown. Additionally
analog clocks, cannons and other gadgets are explored.

Scripting Recipes for Second Life194

195Chapter 7: Miscellaneous Recipes

 CHAPTER 7: MISCELLANEOUS RECIPES

 • Shooting an Avatar from a Cannon
 • Creating an Analog Clock
 • Reading the Weather
 • Using Notecards for Confi guration
 • Tracking Avatar's On-Line Status
 • Creating a Slideshow

 The recipes presented in this chapter are not easily classifi ed into one of the categories
covered by the other chapters. This chapter covers a wide range of topics from shooting an
avatar from a cannon to monitoring Second Life weather.

 This chapter also introduces how to use notecards to store confi guration information.
Notecards were introduced in Chapter 6 and are very similar to text fi les. Using the note-
card, the user can store confi guration information about the script into the notecard. This
allows the function of the script to change, without requiring the user to modify the actual
script fi le.

 Recipe 7.1: Avatar Cannon
 The llPushObject function allows one object to apply force to another. This

causes the second object to move in a specifi ed direction. There are many uses for the
 llPushObject function. One simple demonstration of this is an avatar cannon. The
avatar cannon allows an avatar to sit in its barrel and be blasted into the air.

 Chapter 10 introduces a parachute recipe. The cannon recipe is useful for testing the
parachute recipe. Strap on a parachute and blast your avatar into the air, with the cannon.
Figure 7.1 shows an avatar waiting to be shot from the cannon.

Scripting Recipes for Second Life196

 Figure 7.1: Avatar Cannon

 The script necessary to produce this cannon is shown in Listing 7.1.

 Listing 7.1: Avatar Cannon (Cannon.lsl)

 key target;
integer countdown;

default
{
 state_entry()
 {
 llSitTarget(<0,0,0.1>,ZERO_ROTATION);
 llSetText("Sit here to\nbe fired from the cannon!",
 <0.0, 1.0, 0.0>, 1.0);
 }

 timer()
 {
 llSay(0,"Cannon will fire in " + (string)countdown
 + " seconds.");
 countdown--;

197Chapter 7: Miscellaneous Recipes

 if(countdown<0)
 {
 llSetTimerEvent(0);
 llPushObject(target, <0,0,2147483647>,
 ZERO_VECTOR, FALSE);
 }
 }

 changed(integer change)
 {

 if (change & CHANGED_LINK)
 {

 key agent = llAvatarOnSitTarget();

 if (agent)
 {
 countdown = 10;
 target = agent;
 llUnSit(target);
 llSetTimerEvent(1);
 }
 }
 }
}

 The cannon recipe begins by declaring the following two variables:

 key target;
integer countdown;

 The default state of the cannon script begins by defi ning a sit target and instruc-
tional text to the avatar.

 llSitTarget(<0,0,0.1>,ZERO_ROTATION);
llSetText("Sit here to\nbe fired from the cannon!",
<0.0, 1.0, 0.0>, 1.0);

 Like previous chapters, the script is notifi ed that an avatar has sat down through a call to
the changed event handler.

 changed(integer change)
{

 The changed event handler begins by checking to see whether a new link has been
added.

Scripting Recipes for Second Life198

 if (change & CHANGED_LINK)
 {

 Next, obtain the key of the avatar that sat in the cannon.

 key agent = llAvatarOnSitTarget();

 If the key was successfully obtained, then set up the cannon to blast the avatar from it.
Begin by setting the countdown to 10. The cannon counts down from ten before shooting the
avatar from its barrel. An avatar cannot be moved while sitting, so it is necessary to unseat
the avatar by calling llUnSit . Finally, begin a timer event at one second intervals.

 if (agent)
 {
 countdown = 10;
 target = agent;
 llUnSit(target);
 llSetTimerEvent(1);
 }
 }
}

 The timer will perform the countdown and ultimately shoot the avatar from its barrel.

 timer()
{
 llSay(0,
"Cannon will fire in " + (string)countdown + " seconds.");

 For each iteration of the timer, decrease the countdown by one.

 countdown--;

 When the countdown reaches zero, then prepare to fi re the avatar. Set the timer in-
terval to zero. This stops the timer. Next call llPushObject to push the avatar, whose
key is stored in the target variable, to shoot the avatar straight up. The value 2,147,483,647
represents the maximum value that can be applied.

 if(countdown<0)
 {
 llSetTimerEvent(0);
 llPushObject(target, <0,0,2147483647>,
 ZERO_VECTOR, FALSE);
 }
}

 This shoots the avatar high into the air.

199Chapter 7: Miscellaneous Recipes

 Recipe 7.2: Analog Clock
 An analog clock is a clock that has two hands that show the passage of minutes and

hours. Digital clocks simply show times with numbers, such as 6:23. Digital clocks are not
a complete replacement for analog clocks. Analog clocks are still considered desirable for
decorative purposes. Additionally, analog clocks, with their moving hands, show the passage
of time more clearly for some people.

 This recipe will show how to create an analog clock in Second Life. The analog clock can
be seen in Figure 7.2.

 Figure 7.2: Analog Clock

 An analog clock consists of three prims. Firstly the clock face and secondly, the hour
and minute hands. The clock face contains the script that runs the clock. The textures of
the hour and minute hands are rotated to give the appearance that they are rotating as time
passes.

 The script necessary to produce the analog clock is shown in Listing 7.2.

Scripting Recipes for Second Life200

 Listing 7.2: Analog Clock (AnalogClock.lsl)

 setClock()
{
 integer t = llRound(llGetWallclock());
 integer hours = t / 3600;
 integer minutes = (t % 3600) / 60;
 integer minutes_angle = minutes;
 integer hours_angle = hours;

 minutes_angle*=6;
 minutes_angle = 180-minutes_angle;

 hours_angle *= 30;
 hours_angle+= (minutes/12)*6;
 hours_angle =180 - hours_angle;

 llSetLinkPrimitiveParams(3,[PRIM_TEXTURE, 0, "hour", <1,1,1>,
<0,0,0>, hours_angle * DEG_TO_RAD]);
 llSetLinkPrimitiveParams(2,[PRIM_TEXTURE, 0, "minute",
<1,1,1>, <0,0,0>, minutes_angle * DEG_TO_RAD]);
}

default
{
 state_entry()
 {

 llSetTimerEvent(60);
 setClock();

 }

 timer()
 {
 setClock();
 }

}

201Chapter 7: Miscellaneous Recipes

 Most of the work performed by the analog clock is done by the setClock function. This
function begins by calling the llGetWallClock function. The llGetWallClock
function returns the number of seconds since midnight Pacifi c Standard Time, which is Sec-
ond Life Standard Time.

 setClock()
{
 integer t = llRound(llGetWallclock());

 The setClock function begins by dividing the number of seconds since midnight by
3,600, which is the number of seconds in an hour. The minutes are calculated by determining
how many minutes have passed since the last hour.

 integer hours = t / 3600;
 integer minutes = (t % 3600) / 60;

 Ultimately, the hands show time through angles. Each position of the hour and minute
hands are specifi c angles. Use the setClock function to determine the angles for each.
Each minute is 6 degrees. 180 degrees is the starting position for the hands.

 integer minutes_angle = minutes;
 integer hours_angle = hours;

 minutes_angle*=6;
 minutes_angle = 180-minutes_angle;

 Each hour is 30 degrees. Additionally, the hour hand should move forward, from its hour
position, for the number of minutes. This allows the hour hand to be just before the two at
1:59.

 hours_angle *= 30;
 hours_angle+= (minutes/12)*6;
 hours_angle =180 - hours_angle;

 Finally, the textures are rotated to the correct angles for the hour and minute hands.

 llSetLinkPrimitiveParams(3,[PRIM_TEXTURE, 0, "hour",
<1,1,1>, <0,0,0>, hours_angle * DEG_TO_RAD]);
 llSetLinkPrimitiveParams(2,[PRIM_TEXTURE, 0, "minute",
<1,1,1>, <0,0,0>, minutes_angle * DEG_TO_RAD]);
}

 The clock begins by setting an event timer for every sixty seconds. The setClock
function is also called to ensure the clock begins at the correct time.

 state_entry()
{
 llSetTimerEvent(60);
 setClock();
}

Scripting Recipes for Second Life202

 At each sixty second interval, update the hands.

 timer()
{
 setClock();
}

 This produces an analog clock that is updated every minute.

 Recipe 7.3: Weather Station
 Weather stations are a popular Second Life gadget, even though they serve little use

to typical users. Second Life does have a weather system. There are clouds in the sky and
wind speed and direction. Normally, this weather simply infl uences fl ags, particle streams,
and aircraft. However, it is possible to create a weather station that will display the weather
conditions.

 Though the weather station is of little use to the average user, it can be helpful to a de-
veloper. Knowing the current weather conditions can explain how the weather affects air
vehicles. The weather station is shown in Figure 7.3.

 Figure 7.3: Weather Station

203Chapter 7: Miscellaneous Recipes

 The script necessary to produce the weather station is shown in Listing 7.3.

 Listing 7.3: Weather Station (Weather.lsl)

 float SEALEVEL = 101.32500;

default
{
 state_entry()
 {
 llSetTimerEvent(1);
 }

 timer()
 {
 string result;

 vector sun = llGetSunDirection();
 vector pos = llGetPos();
 float base = llLog10(5- ((pos.z -
 llWater(ZERO_VECTOR))/15500));
 float pascal = (SEALEVEL + base);
 float temperatureF = ((((pascal * (2 * llPow(10,22)))/
 (1.8311*llPow(10,20))/ 8.314472)/19.85553747) + (sun.z
 * 10));
 vector wind = llWind(pos);
 float cloud = llCloud(ZERO_VECTOR);
 cloud = cloud*100.0;

 result = "Temperature: " + (string) temperatureF;
 result+= "\nBarometer:" + (string)pascal;
 result+= "\nWind:" + (string)llVecMag(wind);
 result+= "\nClouds: " + (string)cloud + "%";
 llSetText(result,<0,1,1>,1);

//llSay(0,"Current Temperature is "+ (string)((temperatureF - 32)
* 5/9) +" Degrees Celsius");
 }
}

 The weather station recipe begins by declaring the barometric pressure at sea-level.

 float SEALEVEL = 101.32500;

 The recipe continues by setting a timer to occur every second.

 state_entry()
{
 llSetTimerEvent(1);
}

Scripting Recipes for Second Life204

 The timer begins by calculating the sun's direction. This is determined by the time of
day. The sun's direction will be used to determine the current temperature.

 timer()
{
 string result;

 vector sun = llGetSunDirection();
 vector pos = llGetPos();

 Next, the barometric pressure is calculated with the following two lines:

 float base = llLog10(5- ((pos.z - llWater(ZERO_VEC-
TOR))/15500));
 float pascal = (SEALEVEL + base);

 These lines implement the barometric formula. For more information on the barometric
formula, refer to this URL:

 http://en.wikipedia.org/wiki/Barometric_formula http://en.wikipedia.org/wiki/Barometric_formula

 The temperature is calculated next. This temperature calculation makes use of both the
sun's position and the barometric pressure. This formula was provided by a Linden Labs
example.

 float temperatureF = ((((pascal * (2 * llPow(10,22)))/
 (1.8311*llPow(10,20))/ 8.314472)/19.85553747) + (sun.z *
10));

 The wind direction and cloud density are also obtained.

 vector wind = llWind(pos);
 float cloud = llCloud(ZERO_VECTOR);
 cloud = cloud*100.0;

 The newly obtained values are linked into a string to be displayed.

 result = "Temperature: " + (string) temperatureF;
 result+= "\nBarometer:" + (string)pascal;
 result+= "\nWind:" + (string)llVecMag(wind);
 result+= "\nClouds: " + (string)cloud + "%";

 The linked string is then displayed.

 llSetText(result,<0,1,1>,1);

 If a Celsius temperature is needed, use the following line to convert to Celsius.

 //llSay(0,"Current Temperature is "+ (string)((temperatureF - 32)
* 5/9) +" Degrees Celsius");
 }
}

205Chapter 7: Miscellaneous Recipes

 The temperature station also includes a small fl ag, which blows in the direction of the
wind.

 Recipe 7.4: Slide Show
 A slide show in Second Life allows avatars to see images. These images are cycled at

regular intervals. All images that should be displayed by the slide show must be stored as
textures. These textures must be placed in the object inventory of the slide show object. The
slide can be seen in Figure 7.4.

 Figure 7.4: Slide Show

 The script necessary to produce the slide show is shown in Listing 7.4.

 Listing 7.4: Slide Show (SlideShow.lsl)

 list slides = ["slide1","slide2","slide3","slide4"];
integer index;

newSlide()
{
 string texture = llList2String(slides,index);
 llSetTexture(texture,1);

Scripting Recipes for Second Life206

 index++;
 if(index>=llGetListLength(slides))
 index = 0;
}

default
{
 state_entry()
 {
 llSetTimerEvent(30);
 index = 0;
 newSlide();
 }

 touch_start(integer num)
 {
 index = 0;
 newSlide();
 llSay(0,"Starting slide show over");
 }

 timer()
 {
 newSlide();
 }
}

 The slide show recipe begins with a list containing all slides to be displayed. Additionally,
an index variable is declared to hold the current slide being displayed.

 list slides = ["slide1","slide2","slide3","slide4"];
integer index;

 The newSlide function is called whenever a new slide is to be displayed. The
 newSlide function begins by extracting the current slide from the list. Then, the texture
of the slide show object is updated to display that texture. If the end of the slide list has
been reached, the index is incremented, and reset to zero. It is important to note that the
 newSlide function displays whichever slide the index is currently on.

 newSlide()
{
 string texture = llList2String(slides,index);
 llSetTexture(texture,1);
 index++;
 if(index>=llGetListLength(slides))
 index = 0;
}

207Chapter 7: Miscellaneous Recipes

 When the script starts, a new timer is created. This will occur every 30 seconds. The
index is reset to the fi rst slide, and that slide is displayed.

 state_entry()
{
 llSetTimerEvent(30);
 index = 0;
 newSlide();
}

 If the slide show is touched, the slide show is started over. It may also be desirable to
move to the next slide early when touched. If this is the case, replicate the functionality of the
timer event handler in the touch_start event handler.

 touch_start(integer num)
{
 index = 0;
 newSlide();
 llSay(0,"Starting slide show over");
}

 When the timer event handler is called, move to the next slide.

 timer()
{
 newSlide();
}

 The slide show object cycles endlessly through all the textures. A slide show can also
be setup so that the script does not need to be modifi ed to confi gure the slides. A notecard
can be used. The next recipe also shows how to create a slide show that is controlled by a
notecard.

 Recipe 7.5: Notecard Controlled Slide Show
 The slide show script shown in the last section is confi gured by directly modifying the

script. This is not always desirable. When an object is purchased in Second Life, the ability to
modify the script is usually restricted. This is done by script creators to protect their software
from being copied. Because of this, the purchaser of that script cannot confi gure the script if
they are not allowed to modify the script.

 To solve this problem, a notecard can be used. A notecard can be used as a type of con-
fi guration fi le. It is a separate object from the script, and is stored in the object's inventory.
The slide show object shown in this recipe looks exactly like the slide show in the previous
recipe. However, it works quite differently, as it is controlled by a notecard. This notecard
is shown in Listing 7.5.

Scripting Recipes for Second Life208

 Listing 7.5: Slide Control Notecard (SlideControl.not)

 slide1
slide2
slide3
slide4

 The notecard lists the name of each slide on a separate line. The script needed to pro-
duce the slide show is shown in Listing 7.6.

 Listing 7.6: A Notecard Controlled Slide Show (NotecardSlideShow.lsl)

 integer index;

// for loading notecard
string notecardName;
key notecardQuery;
integer notecardIndex;
list notecardList;

newSlide()
{
 string texture = llList2String(notecardList,index);
 llSetTexture(texture,1);
 index++;
 if(index>=llGetListLength(notecardList))
 index = 0;
}

default
{
 state_entry()
 {
 if(llGetListLength(notecardList)==0)
 {
 notecardName = "SlideControl";
 state loading;
 }
 else
 {
 llSetTimerEvent(30);
 index = 0;
 newSlide();
 }
 }

 touch_start(integer num)
 {

209Chapter 7: Miscellaneous Recipes

 index = 0;
 newSlide();
 llSay(0,"Starting slide show over");
 }

 timer()
 {
 newSlide();
 }
}

state loading
{
 state_entry()
 {
 llSay(0,"Slideshow loading data...");
 notecardIndex = 0;
 notecardQuery = llGetNotecardLine(notecardName,
 notecardIndex++);
 }

 dataserver(key query_id, string data)
 {
 if (notecardQuery == query_id)
 {
 // this is a line of our notecard
 if (data == EOF)
 {
 llSay(0,"Slideshow loaded...");
 state default;

 } else
 {
 notecardList += [data];
 notecardQuery = llGetNotecardLine(notecardName,
 notecardIndex++);
 }
 }
 }
}

 The notecard based slide show begins by loading the list of slides to a list. After the
slides are in the list, this recipe works in the same way as the previous recipe that did not
use a notecard. This code can be reused anytime a notecard should be read to a list. Several
variables are defi ned to read in the notecard.

 integer index;

Scripting Recipes for Second Life210

// for loading notecard
string notecardName;
key notecardQuery;
integer notecardIndex;
list notecardList;

 The notecardName variable holds the name of the notecard. The
 notecardQuery variable holds the name of the query that is taking place to the note-
card. The notecardIndex contains the index number of the notecard line being read.
The notecardList variable contains the lines read in from the notecard.

 The script begins by checking to see whether the slide list has already been loaded. If
the list has not been loaded, then set the name of the script to “SlideControl” and the state
switches to loading.

 state_entry()
{
 if(llGetListLength(notecardList)==0)
 {
 notecardName = "SlideControl";
 state loading;
 }

 If the list has been loaded, set a timer to display a new texture every 30 seconds.

 else
 {
 llSetTimerEvent(30);
 index = 0;
 newSlide();
 }
}

 The loading state begins by announcing that the slide show is loading. The query begins
by requesting the fi rst line from the notecard. Notecard reading is asynchronous. As lines
are read in they are passed to the dataserver event handler.

 state loading
{
 state_entry()
 {
 llSay(0,"Slideshow loading data...");
 notecardIndex = 0;
 notecardQuery = llGetNotecardLine(notecardName,
 notecardIndex++);
 }

211Chapter 7: Miscellaneous Recipes

 The dataserver event handler is called for each line that is read in. First, the
 dataserver handler checks to see whether the information received relates to the que-
ry being processed.

 dataserver(key query_id, string data)
 {
 if (notecardQuery == query_id)
 {

 Next, it is determined whether we had reached the end of the notecard. If the end has
been reached, then return to the default state. There will be items in the list, and the
slide show can start.

 // this is a line of our notecard
 if (data == EOF)
 {
 llSay(0,"Slideshow loaded...");
 state default;

 Each line read in from the notecard is stored in the list.

 } else
 {
 notecardList += [data];
 notecardQuery = llGetNotecardLine(notecardName,
 notecardIndex++);
 }
 }
 }
}

 The mechanism for displaying the textures is the same as the previous recipe. For more
information on how that works, refer to the previous recipe.

 Recipe 7.6: Announcer Script
 An announcer script is a script that reads text and “says” that text to all avatars near by.

These are sometimes more effective than signs because most users will read what is being
said around them. The text to be announced is read in from a notecard.

 The announcer script presented in this recipe reads a famous speech by Mark Antony.
The script is shown in Listing 7.7.

 Listing 7.7: An Announcer Script (NotecardReader.lsl)

 integer index;
key query;

Scripting Recipes for Second Life212

default
{
 state_entry()
 {
 llSetText(
 "Touch me to\nHear me read from a notecard.",<0,1,1>,1);
 }

 touch_start(integer total_number)
 {
 index = 0;
 query = llGetNotecardLine("MarkAntony",index++);
 llSetTimerEvent(10);
 }

 timer()
 {
 query = llGetNotecardLine("MarkAntony",index++);
 }

 dataserver(key query_id, string data)
 {
 if (query == query_id)
 {
 // this is a line of our notecard
 if (data == EOF)
 {
 llSetTimerEvent(0);

 } else
 {
 // increment line count
 llSay(0, data);
 }
 }
 }
}

 Unlike the previous recipe, this recipe will not load the notecard into a list. This recipe
simply announces the notecard as it is read. The recipe begins by creating an index variable
that holds the current line number being announced, and a query variable that holds the cur-
rent query to the notecard.

 integer index;
key query;

 Next, the recipe displays text that tells avatars to touch it to hear it read its notecard.

213Chapter 7: Miscellaneous Recipes

 state_entry()
{
 llSetText("Touch me to\nHear me read from a notecard.",
 <0,1,1>,1);
}

 Once the announcer is touched, a notecard query is begun. Additionally, a timer is set
for every ten seconds.

 touch_start(integer total_number)
{
 index = 0;
 query = llGetNotecardLine("MarkAntony",index++);
 llSetTimerEvent(10);
}

 The timer is very simple, it requests the next notecard line every ten seconds.

 timer()
{
 query = llGetNotecardLine("MarkAntony",index++);
}

 When a requested line is received by the dataserver event handler, that text is an-
nounced to nearby avatars using the llSay function.

 dataserver(key query_id, string data)
{
 if (query == query_id)
 {
 // this is a line of our notecard
 if (data == EOF)
 {
 llSetTimerEvent(0);
 } else
 {
 // increment line count
 llSay(0, data);
 }
 }
}

 If the end of the notecard has been reached, the timer is killed, and the object stops an-
nouncing. Some announcer scripts run continuously. To cause this script to do that, restart
the query.

Scripting Recipes for Second Life214

 Recipe 7.7: Online Indicator
 Most commerce in Second Life is conducted completely automatically. Most commonly,

an avatar clicks on something and then pays for it. However, sometimes it is necessary to
page an avatar to the business. This is particularly true of the service industry in Second
Life.

 An online indicator is a small cube that is green if the shop owner is online, red other-
wise. It also includes text that explains the online status of the avatar. If an avatar clicks the
cube, the shop owner will be paged. The online indicator can be seen in Figure 7.5.

 Figure 7.5: Online Indicator

 The online indicator script can be seen in Listing 7.7.

 Listing 7.7: Online Indicator (OnlineIndicator.lsl)

 string name = "";
string last_online = "";
key nameKey = NULL_KEY;
integer isAvailable = TRUE;
integer isOnline = FALSE;

215Chapter 7: Miscellaneous Recipes

list MONTHS = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug",
"Sep","Oct","Nov","Dec"];

string get_date()
{
 integer t = llRound(llGetWallclock());

 integer hours = t / 3600;
 integer minutes = (t % 3600) / 60;
 integer seconds = t % 60;

 string time = (string)hours + ":";
 if(minutes < 10) time += "0" + (string)minutes + ":";
 else time += (string)minutes + ":";
 if(seconds < 10) time += "0" + (string)seconds;
 else time += (string)seconds;

 string DateToday = "";
 string DateUTC = llGetDate();
 list DateList = llParseString2List(DateUTC, ["-", "-"], []);
 integer year = llList2Integer(DateList, 0);
 integer month = llList2Integer(DateList, 1);
 integer day = llList2Integer(DateList, 2);
 month = month - 1;
 if(day < 10) DateToday = "0";
 DateToday += (string)day + "-";

 DateToday += llList2String(MONTHS,month);
 DateToday += " ";
 DateToday += (string)year;

 time = time + " " + DateToday;
 return time;
}

default
{
 on_rez(integer p)
 {
 llResetScript();
 }

 state_entry()
 {

Scripting Recipes for Second Life216

 llSetText("Online Detector\nTouch to Claim",<1,1,1>,1);
 }

 touch_start(integer total_number)
 {
 if(name == "")
 {
 nameKey = llDetectedKey(0);
 name = llDetectedName(0);
 llSetText(name + "\nSetting up...",<1,1,1>,1);
 llSetTimerEvent(4.0);
 return;
 }

 if(llDetectedName(0) == name)
 {
 if(isAvailable == FALSE)
 {
 isAvailable = TRUE;
 llWhisper(0, "IM's will be sent to you.");
 return;
 }
 else
 {
 isAvailable = FALSE;
 llWhisper(0, "IM's will not be sent to you.");
 return;
 }

 }
 else
 {
 if(isAvailable && isOnline)
 {
 llInstantMessage(nameKey, llDetectedName(0)
 + " is paging you from " + llGetRegionName());
 llWhisper(0,"A message has been sent to " + name);
 }
 }
 }

217Chapter 7: Miscellaneous Recipes

 timer()
 {
 if(nameKey)
 {
 llRequestAgentData(nameKey,DATA_ONLINE);
 }
 }

 dataserver(key query, string data)
 {
 string text = "";

 if((integer)data == 1)
 {
 isOnline = TRUE;
 llSetColor(<0,1,0>,ALL_SIDES);
 text = name + " is ONLINE";
 if(isAvailable) text += "\nClick to Send IM";
 llSetText(text, <0.25,1.0,0.25>,1);
 last_online = "";
 }
 else
 {
 isOnline = FALSE;
 llSetColor(<1,0,0>,ALL_SIDES);
 text = name + " is OFFLINE";

 if(last_online == "") last_online = get_date();
 text += "\nLast Online: " + last_online;
 llSetText(text, <1.0,0.25,0.25>,1);
 }
 }
}

 The online indicator begins by defi ning several variables that will hold the current status.
First, the name of the avatar that is being tracked is kept. The last_online variable
holds the last time that avatar was online. The isAvailable variable holds whether the
avatar can be paged or not. The isOnline variable holds if the avatar is online.

 string name = "";
string last_online = "";
key nameKey = NULL_KEY;
integer isAvailable = TRUE;
integer isOnline = FALSE;

 The MONTHS list holds all of the months of the year for display purposes.

 list MONTHS = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Se

Scripting Recipes for Second Life218

p","Oct","Nov","Dec"];

 The get_date function is a useful function that returns the time and date as a string.
This function was based on a function provided by Linden Labs.

 string get_date()
{
 integer t = llRound(llGetWallclock());

 First determine the hours, minutes and seconds.

 integer hours = t / 3600;
 integer minutes = (t % 3600) / 60;
 integer seconds = t % 60;

 If any of the hours minutes or seconds is a single digit, add a zero to make it a two digit
number. For example the number “1” becomes “01”.

 string time = (string)hours + ":";
 if(minutes < 10) time += "0" + (string)minutes + ":";
 else time += (string)minutes + ":";
 if(seconds < 10) time += "0" + (string)seconds;
 else time += (string)seconds;

 Next, get the date and parse to a string. This will separate the month, day and year.

 string DateToday = "";
 string DateUTC = llGetDate();
 list DateList = llParseString2List(
DateUTC, ["-", "-"], []);

 Break out the month day and year as integers.

 integer year = llList2Integer(DateList, 0);
 integer month = llList2Integer(DateList, 1);
 integer day = llList2Integer(DateList, 2);
 month = month – 1;

 If the day is single digit, make it multidigit.

 if(day < 10) DateToday = "0";
 DateToday += (string)day + "-";

 Add in the month from the list defi ned earlier.

 DateToday += llList2String(MONTHS,month);
 DateToday += " ";
 DateToday += (string)year;

 Construct the time and date combination and return the result.

 time = time + " " + DateToday;
 return time;
}

219Chapter 7: Miscellaneous Recipes

 This function can be used anywhere that the time and date needs to be formatted as a
string.

 The on_rez event handler begins by resetting the script. That way, if the object has
changed owners, the owner variable will be properly set.

 on_rez(integer p)
{
 llResetScript();
}

 Set the text to confi rm that the script is unclaimed.

 state_entry()
 {
 llSetText("Online Detector\nTouch to Claim",<1,1,1>,1);
 }

 After someone touches the pager, set up to track that avatar.

 touch_start(integer total_number)
 {
 if(name == "")
 {

 Save the avatar's key and name and indicate that the object is setting up.

 nameKey = llDetectedKey(0);
 name = llDetectedName(0);
 llSetText(name + "\nSetting up...",<1,1,1>,1);
 llSetTimerEvent(4.0);
 return;
 }

 If the object is being touched by the owner, toggle the availability status.

 if(llDetectedName(0) == name)
 {

 The avatar is available to receive pages.

 if(isAvailable == FALSE)
 {
 isAvailable = TRUE;
 llWhisper(0, "IM's will be sent to you.");
 return;
 }
 else
 {

 The avatar is not available to receive pages.

Scripting Recipes for Second Life220

 isAvailable = FALSE;
 llWhisper(0,
"IM's will not be sent to you.");
 return;
 }

 }

 If the object is not being touched by the one who claimed it and they are available, send
an instant message.

 else
 {
 if(isAvailable && isOnline)
 {
 llInstantMessage(nameKey,
llDetectedName(0) + " is paging you from "
+ llGetRegionName());
 llWhisper(0,"A message has been sent to "
+ name);
 }
 }
 }

 The timer checks the online status of the avatar. Checking the online status is very
similar to reading a notecard. A query is sent and the dataserver event is called to
indicate the online status.

 timer()
 {
 if(nameKey)
 {
 llRequestAgentData(nameKey,DATA_ONLINE);
 }
 }

 dataserver(key query, string data)
 {
 string text = "";

 If the user is online, update the object.

 if((integer)data == 1)
 {
 isOnline = TRUE;
 llSetColor(<0,1,0>,ALL_SIDES);
 text = name + " is ONLINE";
 if(isAvailable) text += "\nClick to Send IM";
 llSetText(text, <0.25,1.0,0.25>,1);

221Chapter 7: Miscellaneous Recipes

 last_online = "";
 }
 else

 If the user is not online, indicate when the user was last online.

 {
 isOnline = FALSE;
 llSetColor(<1,0,0>,ALL_SIDES);
 text = name + " is OFFLINE";

 if(last_online == "") last_online = get_date();
 text += "\nLast Online: " + last_online;
 llSetText(text, <1.0,0.25,0.25>,1);
 }
 }
}

 This script can be used to track the online status for both the owner and other avatars.
When the owner fi rst creates the object, it is unclaimed. The owner can then claim the online
status indicator, or allow someone else to claim it.

 Summary
 This chapter introduced a variety of recipes that did not fi t into the categories established

by the other chapters in this book. A variety of useful objects such as clocks, cannons, online
indicators and slide shows were demonstrated. Additionally, it was shown how to use note-
cards for script confi guration.

 Commerce is a very important aspect of Second Life. Some people who earn their entire
income through Second Life. The next chapter will provide several recipes for scripts that
allow money to be exchanged.

Scripting Recipes for Second Life222

223Chapter 8: Commerce

 CHAPTER 8: COMMERCE

 • Drawing Traffi c with Camping
 • Paying Money
 • Receiving Money
 • Using a Vendor Object
 • Accepting Tips

 Commerce occurs in Second Life whenever money exchanges hands. At the most sim-
ple level any object can be marked for sale. Then any avatar that encounters that object can
purchase that object for the marked price. Many stores in Second Life operate exactly that
way. Such a transaction needs no custom scripting.

 However, many stores employ custom scripts to enhance the buying experience. Fur-
ther, sometimes what is being purchased may be a service. For example, an avatar may pur-
chase a ride on a ferris wheel. A script is necessary to collect the money and start the ride.

 This chapter presents recipes for some of the most common commerce needs in Second
Life. Camping chairs, rental scripts, vendor objects and tip jars will all be discussed. These
items will be discussed in the following recipes.

 Recipe 8.1: Camping Pad
 Camping is a very popular activity in Second Life. By camping I do not mean grabbing a

tent and heading for the great outdoors. Camping in Second Life is something entirely differ-
ent. Before camping is explained, it is important to understand how traffi c works in Second
Life.

 There are many different ways that an avatar will fi nd a particular location in Second
Life. One of the most common methods is the search. When something is entered into the
“Places Search” a list of places is returned that match the search. However, what order are
these results sorted in?

 The results of a search are sorted by traffi c. The higher the traffi c numbers, the higher
the search spot. Traffi c is a number defi ned by how much time avatars spend on the speci-
fi ed parcel of land. Only Linden Labs knows the exact formula for how traffi c is calculated.
Figure 8.1 shows the traffi c numbers for a parcel of land.

Scripting Recipes for Second Life224

 Figure 8.1: Traffi c

 As you can see, the land shown above has a traffi c number of 863. Some of the most
popular sites in Second Life have traffi c numbers around 100,000.

 Therefore, if land's traffi c number is increased, that land will be placed higher in the
search. Therefore, this will likely give the land even more traffi c. Because of this, some
land owners want to encourage avatars to remain on their land, even if those avatars are not
actually doing anything. Even if an avatar is just sitting, or camping, on the land, the traffi c
number is improved.

 This is what camping in Second Life is. To the average user of Second Life, camping is
the easiest way to earn money. However, it also the lowest paid job in Second Life. A camping
pad is an object that the avatar sits on. The pad is then paid money based on how long the
avatar remains on that pad. Pay rates are usually in the range of one Linden dollar per fi ve
minutes to one Linden dollar per minute.

 From the land owner's perspective, camping is paid advertising for their attraction. Fig-
ure 8.2 shows a camping pad.

225Chapter 8: Commerce

 Figure 8.2: A Camping Pad

 Most camping pads will have the avatar doing something while they are camping. Usual-
ly the avatar will be dancing, as seen in Figure 8.2. However, some make it appear as though
the avatar is performing a job, such as planting fl owers or sweeping the fl oor.

 The camping script in this recipe is controlled by a confi guration notecard. This note-
card is shown in Listing 8.1.

 Listing 8.1: Camping Pad Confi guration (CampConfi g.not)

 1
1
2

 The fi rst line defi nes how many minutes must pass before the avatar is paid. The second
number defi nes how much money the avatar is paid every time the interval, defi ned by the
fi rst line, elapses. The third line defi nes after how many intervals the avatar will be stood up.
Standing the avatar up causes the avatar to get paid, but no additional payments are made be-
cause the avatar is standing. This prevents the avatar from being left endlessly at the camp-
ing spot. Many camping pads do not ever stand the avatar up. If this is the desired behavior,
use a zero for the third line.

Scripting Recipes for Second Life226

 Two scripts are necessary to create this camping object. One single prim can have any
number of scripts. If more than one script is contained in a prim, both scripts will execute
simultaneously. There are many different reasons for having more than one script. One is
simply to organize what would otherwise be a very lengthy single script. However, the camp-
ing pad uses two scripts out of necessity.

 Chapter 5 introduced the need to request permissions of the avatar. For example, in
Chapter 5, the vehicles need to request permission to take the controls. There are other per-
mission requests that can be made. The permission requests are summarized here:

 • Permission to take money
 • Permission to take the controls
 • Permission to animate the avatar
 • Permission to attach/detach from the object
 • Permission to change links
 • Permission to change the agent's camera position
 • Permission to control the agent's camera

 The camping pad script needs two of these permissions. Firstly, it must animate the
avatar so that the avatar will dance. Secondly, it must have permission to take money from its
owner to pay the avatar to camp.

 However, a single script can only have permissions from one avatar. The camping script
needs permission to take money from its owner and it needs animation permission from the
avatar using it. These are two separate avatars. As a result, two separate scripts are needed.
The fi rst script will cause the avatar to dance; the second script will handle the money and
pay the dancing avatar.

 Camping Pad Dance Script

 The fi rst script causes the avatar to dance. It is independent of the main camping control
script. Listing 8.2 shows the dance script.

 Listing 8.2: Camping Pad Dancing (CampDance.lsl)

 key avataronsittarget;

default
{
 state_entry()
 {
 llSetTextureAnim(ANIM_ON | ROTATE | LOOP | SMOOTH,
 ALL_SIDES, 0, 0, 0, 100, 1);
 llSitTarget(<0,0,1>,<0,0,0,1>);
 llSetSitText("Camp");
 llSetTimerEvent(3);
 }

227Chapter 8: Commerce

 changed(integer change)
 {
 if(change & CHANGED_LINK)
 {
 avataronsittarget = llAvatarOnSitTarget();
 if(avataronsittarget != NULL_KEY)
 {
 if ((llGetPermissions() &
PERMISSION_TRIGGER_ANIMATION) && llGetPermissionsKey() ==
avataronsittarget)
 {
 llStopAnimation("sit");
 llStartAnimation("dance1");
 }
 else
 {
 llRequestPermissions(avataronsittarget,
 PERMISSION_TRIGGER_ANIMATION);
 }
 }
 }
 }

 timer()
 {
 if ((llGetPermissions() & PERMISSION_TRIGGER_ANIMATION)
 && llGetPermissionsKey() == avataronsittarget)
 {
 llStartAnimation("dance1");
 }
 }

 run_time_permissions(integer perm)
 {
 if(perm)
 {
 llStopAnimation("sit");
 llStartAnimation("stand");
 }
 }

}

 The script begins by declaring a variable that will hold the key to the avatar that has sat
on the camping pad.

Scripting Recipes for Second Life228

 key avataronsittarget;

 The dance script begins by creating a texture animation that gives the camping pad its
“spinning spiral” look. For more information on texture animation, refer to Chapter 3. A sit
target is defi ned, as well as new “sit text”. The “sit text” appears on the menu when the user
clicks the camping pad.

 state_entry()
{
 llSetTextureAnim(ANIM_ON | ROTATE | LOOP | SMOOTH,
 ALL_SIDES, 0, 0, 0, 100, 1);
 llSitTarget(<0,0,1>,<0,0,0,1>);
 llSetSitText("Camp");
 llSetTimerEvent(3);
}

 As seen in previous recipes, the changed event handler is called when the avatar sits
on the camping script.

 changed(integer change)
{
 if(change & CHANGED_LINK)
 {

 The key to the avatar that has sat down is obtained.

 avataronsittarget = llAvatarOnSitTarget();
 if(avataronsittarget != NULL_KEY)
 {

 Permission is obtained to animate the avatar. Animating the avatar allows the avatar to
dance. The “dance1” animation is built into Second Life. For a complete list of animations,
refer to Appendix B.

 if ((llGetPermissions() &
 PERMISSION_TRIGGER_ANIMATION) &&
 llGetPermissionsKey() == avataronsittarget)
 {
 llStopAnimation("sit");
 llStartAnimation("dance1");
 }
 else
 {
 llRequestPermissions(avataronsittarget,
 PERMISSION_TRIGGER_ANIMATION);
 }
 }
 }
}

 The dance animation only lasts briefl y. It will need to be replayed at regular intervals.

229Chapter 8: Commerce

 timer()
{
 if ((llGetPermissions() &
 PERMISSION_TRIGGER_ANIMATION) &&
 llGetPermissionsKey() == avataronsittarget)
 {
 llStartAnimation("dance1");
 }
}

 This simple script causes the avatar to dance. The camping pad control script does all
the important work of the script.

 Camping Pad Control Script

 The dance script reviewed in the previous section requested permissions from the avatar
using the camping pad. The camping control script covered in this section must request
payment permission from the owner of the camping pad. This allows the camping pad to pay
the camper.

 Listing 8.3: Camping Pad Control (Camp.lsl)

 integer campmoney = 0;
integer campadd = 2;
integer camptime = 300;
integer campcycle = 2;
integer cyclesLeft = 0;
string reciever;

// for loading notecard
string notecardName;
key notecardQuery;
integer notecardIndex;

displayText()
{
 if(reciever!=NULL_KEY)
 {
 if(campcycle>0)
 {
 llSetText("Money:"+(string)campmoney +
 "\nCycles Left: " + (string)cyclesLeft,<0,0,0>,1);
 }
 else
 {
 llSetText("Money:"+(string)campmoney,<0,0,0>,1);

 }

Scripting Recipes for Second Life230

 }
 else
 {
 llSetText("Sit here for free money,\nL$"
 +(string)campadd+" every "
 +(string)(camptime/60)+" minutes.",<0,0,0>,1);
 }

}

default
{
 state_entry()
 {
 llRequestPermissions(llGetOwner(), PERMISSION_DEBIT);
 }

 on_rez(integer s)
 {
 llResetScript();
 }

 run_time_permissions (integer perm)
 {
 if(perm & PERMISSION_DEBIT)
 {
 notecardName = "Config";
 state loading;
 }
 }
}

state ready
{
 state_entry()
 {
 reciever = NULL_KEY;
 displayText();
 llSitTarget(<0, 0, 1>, ZERO_ROTATION);
 }

 touch_start(integer num_detected)
 {
 if(llDetectedKey(0)==llGetOwner())
 {

231Chapter 8: Commerce

 llSay(0,"Camping pad resetting.");
 llResetScript();
 }
 }

 changed(integer change)
 {
 if (change & CHANGED_LINK)
 {
 if (llAvatarOnSitTarget() != NULL_KEY)
 {
 cyclesLeft = campcycle;
 reciever = llAvatarOnSitTarget();
 displayText();
 llSetTimerEvent(camptime);
 }
 else
 {
 if(campmoney<1)
 {
 llInstantMessage(reciever,
 "You did not stay long enough to earn any money.");
 }
 else
 {
 llGiveMoney(reciever,campmoney);
 }

 reciever=NULL_KEY;
 campmoney=0;
 displayText();
 llSetTimerEvent(0);
 }
 }
 }

 timer()
 {
 campmoney = campmoney+campadd;
 if(campcycle>0)
 {
 cyclesLeft--;
 if(cyclesLeft<=0)
 {

Scripting Recipes for Second Life232

 llSay(0,"Standing avatar after " +
(string)campcycle + " cycles.");
 llUnSit(reciever);
 }
 }
 displayText();
 }
}

state loading
{
 state_entry()
 {
 llSay(0,"Camping pad loading data...");
 notecardIndex = 0;
 notecardQuery = llGetNotecardLine(notecardName,
 notecardIndex++);
 }

 dataserver(key query_id, string data)
 {
 if (notecardQuery == query_id)
 {
 // this is a line of our notecard
 if (data == EOF)
 {
 llSay(0,"Data loaded...");
 state ready;

 } else
 {
 if(notecardIndex==1)
 {
 camptime = ((integer)data)*60;
 }
 else if(notecardIndex==2)
 {
 campadd = (integer)data;
 }
 else if(notecardIndex==3)
 {
 campcycle = (integer)data;
 }

 notecardQuery = llGetNotecardLine(notecardName,
 notecardIndex++);

233Chapter 8: Commerce

 }
 }
 }
}

 The camping control script begins by defi ning some variables that will hold the state of
the camping script. The values here are simply defaults, the real values will be read from the
notecard.

 integer campmoney = 0;
integer campadd = 2;
integer camptime = 300;
integer campcycle = 2;
integer cyclesLeft = 0;
string receiver;

 The campmoney variable holds how much money the camper has been paid. This
money will be given to the camper when they stand up. The camptime variable holds the
amount of time for each camping cycle. The campadd variable holds the amount of money
to add to campmoney for each cycle. The cyclesLeft variable holds the amount of
cycles left before the avatar will be stood up. The campcycle variable holds the starting
number of cycles before an avatar is stood up. The receiver variable holds the name of
the avatar that will receive the money.

 Additionally, several variables are defi ned to read the notecard.

 // for loading notecard
string notecardName;
key notecardQuery;
integer notecardIndex;

 The notecardName variable holds the name of the notecard. The
 notecardQuery variable holds the query to the notecard. The notecardIndex

holds the current line being read in the notecard.

 The displayText function is called each time the descriptive text above the camp-
ing pad needs updating.

 displayText()
{
 if(receiver!=NULL_KEY)
 {

 If there is someone sitting at the camping pad, display how much money they have ob-
tained. Also, if this camping pad will stand the avatar up after a certain number of cycles,
display that as well.

 if(campcycle>0)
 {

Scripting Recipes for Second Life234

 llSetText("Money:"+(string)campmoney +
 "\nCycles Left: " + (string)cyclesLeft,<0,0,0>,1);
 }
 else
 {
 llSetText("Money:"+(string)campmoney,<0,0,0>,1);

 }
 }

 If there is no one sitting at the camping pad, display how much money will be paid by the
camping pad.

 else
 {
 llSetText("Sit here for free money,\nL$"
 +(string)campadd+" every "
 +(string)(camptime/60)+" minutes.",<0,0,0>,1);
 }
}

 When the camping pad fi rst starts up, the default state is entered.

 Camping Default State

 The default state has only one purpose. That is to request permission from the
camping pad owner to deduct money. This money will be used to pay campers.

 state_entry()
{
 llRequestPermissions(llGetOwner(), PERMISSION_DEBIT);
}

 When this object is rezed make sure to reset. The owner may have changed if it has been
transferred to someone else's inventory.

 on_rez(integer s)
{
 llResetScript();
}

 Next the run_time_permission event handler is presented.

 run_time_permissions (integer perm)
{
 if(perm & PERMISSION_DEBIT)
 {
 notecardName = "Config";
 state loading;
 }
}

235Chapter 8: Commerce

 After the permission has been obtained, enter the loading state.

 Camping Loading State

 The camping pad obtains all of its confi guration information from the confi guration no-
tecard. The loading state begins by announcing that the camping pad is loading data. The
initial query is sent for the fi rst line of data from the notecard.

 state_entry()
{
 llSay(0,"Camping pad loading data...");
 notecardIndex = 0;
 notecardQuery =
 llGetNotecardLine(notecardName,notecardIndex++);
}

 As each line is read in, the dataserver event handler is called.

 dataserver(key query_id, string data)
{
 if (notecardQuery == query_id)
 {

 If the last line of the notecard has been read, switch to the ready state. The ready state
will wait for a camper.

 // this is a line of our notecard
 if (data == EOF)
 {
 llSay(0,"Data loaded...");
 state ready;
 } else
 {

 The fi rst line of the confi guration card specifi es how much time the camper just sits to be
paid. This is the length of time for each interval.

 if(notecardIndex==1)
 {
 camptime = ((integer)data)*60;
 }

 The second line specifi es the amount of money paid for each interval.

 else if(notecardIndex==2)
 {
 campadd = (integer)data;

 }

Scripting Recipes for Second Life236

 The third line specifi es how many intervals should pass before the camper is stood up.

 else if(notecardIndex==3)
 {
 campcycle = (integer)data;
 }

 The dataserver event handler then reads the next line.

 notecardQuery =
 llGetNotecardLine(notecardName,notecardIndex++);
 }
 }
}

 After all of the confi guration information has been read, the camping pad enters the
 ready state.

 Camping Ready State

 When the ready state is fi rst entered, the receiver is set to NULL_KEY and the
informational text is displayed. The sit target is set to just above the camping pad.

 state_entry()
{
 receiver = NULL_KEY;
 displayText();
 llSitTarget(<0, 0, 1>, ZERO_ROTATION);
}

 If the owner touches the camping pad, it will reset. This is useful for when the confi gura-
tion notecard changes.

 touch_start(integer num_detected)
{
 if(llDetectedKey(0)==llGetOwner())
 {
 llSay(0,"Camping pad resetting.");
 llResetScript();
 }
}

 The process begins when an avatar sits on the camping pad. The cyclesLeft coun-
ter is reset and the text is updated to indicate how much money the avatar has earned. In the
beginning this will be zero, but it will increase as the avatar remains on the camping pad.

 changed(integer change)
{
 if (change & CHANGED_LINK)
 {

237Chapter 8: Commerce

 if (llAvatarOnSitTarget() != NULL_KEY)
 {
 cyclesLeft = campcycle;
 receiver = llAvatarOnSitTarget();
 displayText();
 llSetTimerEvent(camptime);
 }
 else
 {

 If the avatar is standing and did not earn any money, inform the avatar that they did not
remain long enough.

 if(campmoney<1)
 {
 llInstantMessage(receiver,
"You did not stay long enough to earn any money.");
 }

 If the avatar stayed long enough to earn some money, pay the avatar.

 else
 {
 llGiveMoney(receiver,campmoney);
 }

 Finally, reset the camping pad for the next camper.

 receiver=NULL_KEY;
 campmoney=0;
 displayText();
 llSetTimerEvent(0);
 }
 }
}

 The timer event updates the displayed text and also checks to see whether it is time
to stand up the avatar. The timer is called once per interval.

 timer()
{

 First, the correct amount of money is added to the money already accumulated by the
avatar.

 campmoney = campmoney+campadd;
 if(campcycle>0)
 {
 cyclesLeft--;
 if(cyclesLeft<=0)
 {

Scripting Recipes for Second Life238

 llSay(0,"Standing avatar after " +
 (string)campcycle + " cycles.");
 llUnSit(receiver);
 }
 }

 Finally, the display is updated to refl ect how much money the avatar has earned so far.

 displayText();
}

 Camping scripts are a good way to build traffi c to a parcel of land. This demonstrates a
recipe that pays out money. The next recipe will receive money.

 Recipe 8.2: Simple Tip Jar
 Tip jars are useful to help cover the costs of running an attraction in Second Life. The

tip jar presented in this chapter allows money to be paid to the owner of the tip jar. The tip
jar tracks how much money has been contributed and displays that value. The tip jar can be
seen in Figure 8.3.

 Figure 8.3: A Tip Jar

239Chapter 8: Commerce

 The script needed to produce the tip jar is shown in Listing 8.4.

 Listing 8.4: Simple Tip Jar (TipJar.lsl)

 integer CHANNEL = 55;
integer total;

generalParticleEmitterOn()
{
 llParticleSystem([
 PSYS_PART_FLAGS , 0
 //| PSYS_PART_BOUNCE_MASK
//Bounce on object’s z-axis
 //| PSYS_PART_WIND_MASK
//Particles are moved by wind
 | PSYS_PART_INTERP_COLOR_MASK
//Colors fade from start to end
 | PSYS_PART_INTERP_SCALE_MASK
//Scale fades from beginning to end
 | PSYS_PART_FOLLOW_SRC_MASK //Particles follow the emitter
 //| PSYS_PART_FOLLOW_VELOCITY_MASK//Particles are created at
the velocity of the emitter
 //| PSYS_PART_TARGET_POS_MASK //Particles follow the target
 | PSYS_PART_EMISSIVE_MASK //Particles will glow
 //| PSYS_PART_TARGET_LINEAR_MASK
//Undocumented--Sends particles in straight line?
 ,

 //PSYS_SRC_TARGET_KEY , NULL_KEY,
//The particles will head towards the specified key
 //Select one of the following for a pattern:
 //PSYS_SRC_PATTERN_DROP Particles start at emit-
ter with no velocity
 //PSYS_SRC_PATTERN_EXPLODE Particles explode from
the emitter
 //PSYS_SRC_PATTERN_ANGLE Particles are emitted
in a 2-D angle
 //PSYS_SRC_PATTERN_ANGLE_CONE Particles are emitted
in a 3-D cone
 //PSYS_SRC_PATTERN_ANGLE_CONE_EMPTY Particles are emitted
everywhere except for a 3-D cone

 PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_EXPLODE

 ,PSYS_SRC_TEXTURE, “”
//UUID of the desired particle texture, or inventory name
 ,PSYS_SRC_MAX_AGE, 0.0

Scripting Recipes for Second Life240

//Time, in seconds, for particles to be emitted. 0 = forever
 ,PSYS_PART_MAX_AGE, 10.0
//Lifetime, in seconds, that a particle lasts
 ,PSYS_SRC_BURST_RATE, 1.0
//How long, in seconds, between each emission
 ,PSYS_SRC_BURST_PART_COUNT, 1
//Number of particles per emission
 ,PSYS_SRC_BURST_RADIUS, 10.0
//Radius of emission
 ,PSYS_SRC_BURST_SPEED_MIN, 0.001
//Minimum speed of an emitted particle
 ,PSYS_SRC_BURST_SPEED_MAX, 0.001
//Maximum speed of an emitted particle
 ,PSYS_SRC_ACCEL, <0,0,0>
//Acceleration of particles each second
 ,PSYS_PART_START_COLOR, <1,1,1>
//Starting RGB color
 ,PSYS_PART_END_COLOR, <1,1,1>
//Ending RGB color, if INTERP_COLOR_MASK is on
 ,PSYS_PART_START_ALPHA, 1.0
//Starting transparency, 1 is opaque, 0 is transparent.
 ,PSYS_PART_END_ALPHA, 1.0
//Ending transparency
 ,PSYS_PART_START_SCALE, <.25,.25,.25>
//Starting particle size
 ,PSYS_PART_END_SCALE, <.25,.25,.25>
//Ending particle size, if INTERP_SCALE_MASK is on
 ,PSYS_SRC_ANGLE_BEGIN, 1.54
//Inner angle for ANGLE patterns
 ,PSYS_SRC_ANGLE_END, 1.55
//Outer angle for ANGLE patterns
 ,PSYS_SRC_OMEGA, <0.0,0.0,0.0>
//Rotation of ANGLE patterns, similar to llTargetOmega()
]);
}

generalParticleEmitterOff()
{
 llParticleSystem([]);
}

updateText()
{
 string str = llKey2Name(llGetOwner()) + “’s Tip Jar\n”;
 if(total>0)
 str+= (string)total + “ donated so far.”;

241Chapter 8: Commerce

 else
 str+= “Empty”;

 llSetText(str, <0,1,0>, 1);
}

default
{
 on_rez(integer s)
 {
 llResetScript();
 }

 state_entry()
 {
 updateText();
 generalParticleEmitterOn();
 llListen(CHANNEL, “”, llGetOwner(), “”);
 }

 money(key giver, integer amount) {
 llSay(0, “Thanks for the “ + (string)amount + “L$, “
 + llKey2Name(giver));
 total+=amount;
 updateText();
 }

 touch_start(integer count)
 {
 if(llDetectedKey(0)==llGetOwner())
 {
 llDialog(llDetectedKey(0), “Clear total amount?”,
 [“Yes”,”No”], CHANNEL);
 }
 }

 listen(integer channel, string name, key id, string message)
 {
 if(message==”Yes” && id==llGetOwner())
 {
 total = 0;
 updateText();
 }
 }
}

Scripting Recipes for Second Life242

 The tip jar begins by defi ning what channel it will listen on. A variable named total is
created that holds the total amount of money contributed.

 integer CHANNEL = 55;
integer total;

 The updateText function is used to update the displayed text above the tip jar. The
name of the avatar who owns the tip jar, as well as how much money has been collected is
displayed.

 updateText()
{
 string str = llKey2Name(llGetOwner()) + "'s Tip Jar\n";
 if(total>0)
 str+= (string)total + " donated so far.";
 else
 str+= "Empty";

 Once the string has been constructed, it can be displayed.

 llSetText(str, <0,1,0>, 1);
}

 The script begins by updating the text and turning on a particle emitter. Particle emitters
were covered in Chapter 4. The particle effect is used to make the tip jar glow.

 state_entry()
{
 updateText();
 generalParticleEmitterOn();
 llListen(CHANNEL, "", llGetOwner(), "");
}

 The only way that a script can collect money from avatars it encounters is by using the
 money event handler. Once a money event handler is present, the “Pay” menu option be-
comes available when the object is right-clicked. The money event handler presented here
will thank the avatar and update the total amount.

 money(key giver, integer amount)
{
 llSay(0, "Thanks for the " + (string)amount + "L$, "
 + llKey2Name(giver));
 total+=amount;
 updateText();
}

 When the tip jar is touched by the owner, the owner is given the option to clear the tip
jar.

243Chapter 8: Commerce

 touch_start(integer count)
 {
 if(llDetectedKey(0)==llGetOwner())
 {
 llDialog(llDetectedKey(0),
 "Clear total amount?", ["Yes","No"], CHANNEL);
 }
 }

 If the owner chooses to clear the tip jar, the listen event handler is called.

 listen(integer channel, string name, key id, string message)
{
 if(message=="Yes" && id==llGetOwner())
 {
 total = 0;
 updateText();
 }
}

 This tip jar only collect tips for the avatar that actually owns it. The next recipe shows
how to use a club style tip jar where the profi ts are split between whoever has claimed the tip
jar and the tip jar owner.

 Recipe 8.3: Club Tip Jar
 Clubs are very common in Second Life. Second Life clubs often employ entertainers.

These entertainers are paid entirely with tips. The club owner sometimes takes a portion of
those tips.

 This recipe shows how to create a club style tip jar. The jar will initially start as un-
claimed. However, the next avatar to touch the tip jar will claim the tip jar. They will receive
all tips from the jar until they either touch it again, or their claim times out. The club tip jar is
confi gured with a notecard. This notecard can be seen in Listing 8.5.

 Listing 8.5: Club Tip Jar (ClubTipJar.not)

 10,20,30,40
75
60
group

 The fi rst line specifi es the four recommended tip amounts that show up when the user
clicks pay. The pay dialog allows predefi ned numbers to be specifi ed. Figure 8.4 shows such
a dialog.

Scripting Recipes for Second Life244

 Figure 8.4: A Pay Dialog

 The third line, of Listing 8.5, specifi es what percentage the avatar should get. The third
line specifi es the number of minutes until the tip jar reverts to no-one claiming it. The script
needed to produce the tip jar is shown in Listing 8.6.

 Listing 8.6: Club Tip Jar (TipJarClub.lsl)

integer CHANNEL = 56;
integer total;
key claimed_key = NULL_KEY;
string claimed_name;
integer index;
key query;
float percent;
integer check_group = FALSE;
integer timeout = 0;

generalParticleEmitterOn()
{
 llParticleSystem([
 PSYS_PART_FLAGS , 0
 //| PSYS_PART_BOUNCE_MASK

245Chapter 8: Commerce

//Bounce on object’s z-axis
 //| PSYS_PART_WIND_MASK
//Particles are moved by wind
 | PSYS_PART_INTERP_COLOR_MASK
//Colors fade from start to end
 | PSYS_PART_INTERP_SCALE_MASK
//Scale fades from beginning to end
 | PSYS_PART_FOLLOW_SRC_MASK //Particles follow the emitter
 //| PSYS_PART_FOLLOW_VELOCITY_MASK
//Particles are created at the velocity of the emitter
 //| PSYS_PART_TARGET_POS_MASK //Particles follow the target
 | PSYS_PART_EMISSIVE_MASK //Particles will glow
 //| PSYS_PART_TARGET_LINEAR_MASK
//Undocumented--Sends particles in straight line?
 ,

 //PSYS_SRC_TARGET_KEY , NULL_KEY,
//The particles will head towards the specified key
 //Select one of the following for a pattern:
 //PSYS_SRC_PATTERN_DROP Particles start at
emitter with no velocity
 //PSYS_SRC_PATTERN_EXPLODE Particles explode from
the emitter
 //PSYS_SRC_PATTERN_ANGLE Particles are emitted
in a 2-D angle
 //PSYS_SRC_PATTERN_ANGLE_CONE Particles are emitted
in a 3-D cone
 //PSYS_SRC_PATTERN_ANGLE_CONE_EMPTY Particles are emitted
everywhere except for a 3-D cone

 PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_EXPLODE

 ,PSYS_SRC_TEXTURE, “”
//UUID of the desired particle texture, or inventory name
 ,PSYS_SRC_MAX_AGE, 0.0
//Time, in seconds, for particles to be emitted. 0 = forever
 ,PSYS_PART_MAX_AGE, 10.0
//Lifetime, in seconds, that a particle lasts
 ,PSYS_SRC_BURST_RATE, 1.0
//How long, in seconds, between each emission
 ,PSYS_SRC_BURST_PART_COUNT, 1
//Number of particles per emission
 ,PSYS_SRC_BURST_RADIUS, 10.0
//Radius of emission
 ,PSYS_SRC_BURST_SPEED_MIN, 0.001
//Minimum speed of an emitted particle

Scripting Recipes for Second Life246

 ,PSYS_SRC_BURST_SPEED_MAX, 0.001
//Maximum speed of an emitted particle
 ,PSYS_SRC_ACCEL, <0,0,0>
//Acceleration of particles each second
 ,PSYS_PART_START_COLOR, <1,1,1> //Starting RGB color
 ,PSYS_PART_END_COLOR, <1,1,1>
//Ending RGB color, if INTERP_COLOR_MASK is on
 ,PSYS_PART_START_ALPHA, 1.0
//Starting transparency, 1 is opaque, 0 is transparent.
 ,PSYS_PART_END_ALPHA, 1.0
//Ending transparency
 ,PSYS_PART_START_SCALE, <.25,.25,.25>
//Starting particle size
 ,PSYS_PART_END_SCALE, <.25,.25,.25>
//Ending particle size, if INTERP_SCALE_MASK is on
 ,PSYS_SRC_ANGLE_BEGIN, 1.54
//Inner angle for ANGLE patterns
 ,PSYS_SRC_ANGLE_END, 1.55
//Outer angle for ANGLE patterns
 ,PSYS_SRC_OMEGA, <0.0,0.0,0.0>
//Rotation of ANGLE patterns, similar to llTargetOmega()
]);
}

generalParticleEmitterOff()
{
 llParticleSystem([]);
}

updateText()
{
 string str;

 if(claimed_key==NULL_KEY)
 str = “Touch to Claim Tip Jar\n”;
 else
 str = claimed_name + “’s Tip Jar\n”;

 if(total>0)
 str+= (string)total + “ donated so far.”;
 else
 str+= “Empty”;

 llSetText(str, <0,1,0>, 1);
}

247Chapter 8: Commerce

default
{
 state_entry()
 {
 llRequestPermissions(llGetOwner(), PERMISSION_DEBIT);
 }

 on_rez(integer s)
 {
 llResetScript();
 }

 run_time_permissions (integer perm)
 {
 if(perm & PERMISSION_DEBIT)
 {
 state unclaimed;
 }
 }
}

state unclaimed
{
 state_entry()
 {
 if(claimed_key!=NULL_KEY)
 {
 llSay(0,”Tip jar switching back to unclaimed.”);
 }
 index = 0;
 query = llGetNotecardLine(“Config”,index++);
 claimed_key = NULL_KEY;
 claimed_name = “”;
 total = 0;
 updateText();
 }

 touch_start(integer count)
 {
 integer success = FALSE;

 if(check_group)
 {

Scripting Recipes for Second Life248

 if(llDetectedGroup(0))
 {
 success = TRUE;
 }
 else
 {
 llSay(0,”Sorry, you are not in the correct group
to claim this jar.”);
 }
 }
 else success = TRUE;

 if(success)
 {
 claimed_key = llDetectedKey(0);
 claimed_name = llDetectedName(0);
 llInstantMessage(claimed_key,”You have claimed the tip
Jar, touch again to uncliam.”);
 llInstantMessage(claimed_key,”You will get “
 + (string)(percent*100) + “% of the tips.”);
 state claimed;
 }
 }

 money(key giver, integer amount) {
 llSay(0, “Thanks for the “ + (string)amount + “L$, “ +
llKey2Name(giver));
 total+=amount;
 updateText();
 }

 dataserver(key query_id, string data)
 {
 if (query == query_id)
 {
 // this is a line of our notecard
 if (data != EOF)
 {
 // process first line, tip price list
 if(index==1)
 {
 list l = llCSV2List(data);
 list l2 = [];

 integer length = llGetListLength(l);

249Chapter 8: Commerce

 integer i;
 for(i=0;i<length;i++)
 {
 l2+=[llList2Integer(l,i)];
 }

 llSetPayPrice(llList2Integer(l2,0),l2);
 }
 // Line 2: Percent to pay to tip claimer
 else if(index==2)
 {
 percent = (integer)data;
 percent/= 100;
 }
 else if(index==3)
 {
 timeout = (integer)data;
 }
 else if(index==4)
 {
 if(llToLower(data)==”group”)
 {
 check_group = TRUE;
 }
 }
 query = llGetNotecardLine(“Config”,index++);

 }
 }
 }
}

state claimed
{
 state_entry()
 {
 if(percent>1)
 {
 llInstantMessage(claimed_key, “Payback it set to more
than 100%, can’t claim tip jar.”);
 state unclaimed;
 }

 updateText();

Scripting Recipes for Second Life250

 generalParticleEmitterOn();
 llListen(CHANNEL, “”, llGetOwner(), “”);
 if(timeout>0)
 llSetTimerEvent(60*timeout);
 }

 money(key giver, integer amount) {
 llSay(0, “Thanks for the “ + (string)amount + “L$, “
 + llKey2Name(giver));
 total+=amount;
 llGiveMoney(claimed_key,(integer)(amount*percent));
 updateText();
 }

 touch_start(integer count)
 {
 if((llDetectedKey(0)==claimed_key)
 || (llDetectedKey(0)==llGetOwner()))
 {
 state unclaimed;
 }
 }

 timer()
 {
 state unclaimed;
 }

 touch_start(integer count)
 {
 if(llDetectedKey(0)==claimed_key ||
 llDetectedKey(0)==llGetOwner())
 state unclaimed;
 }
}

The club script jar begins by defi ning the channel it will use to communicate. The
 total variable holds the total amount donated. The claimed_key variable holds the
key of the avatar that claimed the tip jar. The claimed_name holds the string name of
the avatar who claimed the tip jar.

 integer CHANNEL = 56;
integer total;
key claimed_key = NULL_KEY;
string claimed_name;

251Chapter 8: Commerce

 The variable index holds the current line of the confi guration notecard being read.
The variable query holds the current notecard query. The variable percent holds the
percent of the tip that should be given to the performer. The variable check_group is
true of the avatar who wishes to claim must be in the same group as the object. The variable
 timeout tracks whether the avatar's claim has timed out.

 integer index;
key query;
float percent;
integer check_group = FALSE;
integer timeout = 0;

 The updateText function updates the displayed text for the tip jar.

 updateText()
{
 string str;

 If no-one has claimed the tip jar, indicate this, otherwise display who has claimed the tip
jar. This will be the last avatar to touch the tip jar while it was unclaimed.

 if(claimed_key==NULL_KEY)
 str = "Touch to Claim Tip Jar\n";
 else
 str = claimed_name + "'s Tip Jar\n";

 If money has been donated, that amount is displayed. Otherwise the tip jar reports that
it is empty.

 if(total>0)
 str+= (string)total + " donated so far.";
 else
 str+= "Empty";

 Finally, the string is displayed.

 llSetText(str, <0,1,0>, 1);
}

 The tip jar begins in the default state.

 Default State for the Club Tip Jar

 The default state exists only to request permission to take money from the tip jar
owner then return to the unclaimed state. It is necessary to be able to take money from
the tip jar owner so that the avatar who has claimed the tip jar can be paid. For example, con-
sider a tip jar that is owned by Avatar A, the club owner, and which pays 90% of tips to whoever
has claimed the tip jar. Avatar B claims the tip jar and is paid L$10. The L$10 is immediately
deposited into Avatar A's account. However, the script will now pay $L9 to Avatar B.

 state_entry()

Scripting Recipes for Second Life252

{
 llRequestPermissions(llGetOwner(), PERMISSION_DEBIT);
}

 The run_time_permissions event handler processes the result of the permis-
sion request.

 run_time_permissions (integer perm)
{
 if(perm & PERMISSION_DEBIT)
 {
 state unclaimed;
 }
}

 Once the permission has been obtained, continue to the unclaimed state.

 Unclaimed State for the Club Tip Jar

 When the tip jar enters the unclaimed state, it is from either one of two paths. The
fi rst scenario is that the tip jar has just started, and the unclaimed state is being en-
tered through the default state. The second scenario is that the tip jar is being entered
through the claimed state, as it has just become unclaimed .

 If the tip jar is being entered through the claimed state, then avatars that the tip jar is
returning to unclaimed state.

 state_entry()
{
 if(claimed_key!=NULL_KEY)
 {
 llSay(0,"Tip jar switching back to unclaimed.");
 }

 The tip jar should now begin reading from its confi guration notecard.

 index = 0;
 query = llGetNotecardLine("Config",index++);

 All internal variables should be set to their unclaimed states. The text should be updated
to refl ect this.

 claimed_key = NULL_KEY;
 claimed_name = "";
 total = 0;
 updateText();
}

253Chapter 8: Commerce

 When an avatar touches the tip jar, that avatar may claim the tip jar. If the confi guration
notecard has specifi ed that group access must be checked, the avatar must be in the same
group as the group that owns the tip jar. This may be useful to ensure that only club employ-
ees can claim the tip jars.

 touch_start(integer count)
{
 integer success = FALSE;

 if(check_group)
 {
 if(llDetectedGroup(0))
 {
 success = TRUE;
 }
 else
 {
 llSay(0,
"Sorry, you are not in the correct group to claim this jar.");
 }
 }
 else success = TRUE;

 If the avatar has successfully claimed the tip jar, update the internal variables to refl ect
that avatar's claim. It is important to note that the actual ownership of the tip jar does not
change. The tip just keeps note of who has claimed it.

 if(success)
 {
 claimed_key = llDetectedKey(0);
 claimed_name = llDetectedName(0);

 Send an instant message to whoever has claimed the tip jar. Update the display text to
refl ect the new claimant.

 llInstantMessage(claimed_key,
"You have claimed the tip Jar, touch again to uncliam.");
 llInstantMessage(claimed_key,
"You will get " + (string)(percent*100) + "% of the tips.");
 state claimed;
 }
}

 The money event handler is called whenever a donation is made. However, the tip jar is
in the unclaimed state. In this case, the money is given to the tip jar owner. Nothing is
shared with anyone else.

 money(key giver, integer amount)

Scripting Recipes for Second Life254

{
 llSay(0, "Thanks for the " + (string)amount + "L$, "
 + llKey2Name(giver));
 total+=amount;
 updateText();
}

 As each line of the confi guration notecard is read in, the data server event handler is
called.

 dataserver(key query_id, string data)
{
 if (query == query_id)
 {

 Stop reading if the end of fi le has been reached.

 // this is a line of our notecard
 if (data != EOF)
 {

 Read the fi rst line of the index, this specifi es the suggested tip amounts.

 // process first line, tip price list
 if(index==1)
 {

 The suggested tip amounts are contained in a comma separated value (CSV) list. Use
the llCSV2List function to parse the CSV list to a regular Linden Scripting Language
list. These values are then added to a second list, named l2 , as integers. This is because the
 llSetPayPrice function requires the suggested payments to be as integers.

 list l = llCSV2List(data);
 list l2 = [];

 integer length = llGetListLength(l);
 integer i;
 for(i=0;i<length;i++)
 {
 l2+=[llList2Integer(l,i)];
 }

 Suggested payment prices are specifi ed using the llSetPayPrice function. The
 llSetPayPrice accepts two parameters. The fi rst specifi es the default pay price. For
this recipe, the fi rst pay price is set to be the default pay price. The second parameter is the
list of pay prices to be given to the avatar. This is the list of four numbers presented earlier
in this section.

 llSetPayPrice(llList2Integer(l2,0),l2);
 }

255Chapter 8: Commerce

 Line two holds the percent to pay to the one who has claimed the tip jar.

 else if(index==2)
 {
 percent = (integer)data;
 percent/= 100;
 }

 Line three holds the timeout. Avatars cannot claim the tip jar indefi nitely.

 else if(index==3)
 {
 timeout = (integer)data;
 }

 Line four specifi es whether only group members can claim the tip jar.

 else if(index==4)
 {
 if(llToLower(data)=="group")
 {
 check_group = TRUE;
 }
 }

 Read the next line from the confi guration notecard.

 query = llGetNotecardLine("Config",index++);

 }
 }
}

 The tip jar will remain in the unclaimed state until it is touched. Once touched, the tip jar
enters the claimed state.

 Claimed State for Club Tip Jar

 Once the tip jar has been claimed, all tips must be shared between the tip jar owner and
the avatar who claimed the tip jar.

 state_entry()
{
 if(percent>1)
 {
 llInstantMessage(claimed_key,
"Payback set to more than 100%, can't claim tip jar.");
 state unclaimed;
 }

Scripting Recipes for Second Life256

 The text should be updated to refl ect that the tip jar is now claimed. Additionally, set a
timer for the timeout value.

 updateText();
 llListen(CHANNEL, "", llGetOwner(), "");
 if(timeout>0)
 llSetTimerEvent(60*timeout);
}

 The money event handler is called whenever money is sent to the tip jar.

 money(key giver, integer amount)
{
 llSay(0, "Thanks for the " + (string)amount + "L$, "
 + llKey2Name(giver));

 The avatar is thanked, and the total is updated. The llGiveMoney function call is
then used to give the avatar that claimed the tip jar their portion of the tip.

 total+=amount;
 llGiveMoney(claimed_key,(integer)(amount*percent));
 updateText();
}

 If the claimed tip jar is touched either by its owner or the avatar who claimed the tip jar,
return to an unclaimed state.

 touch_start(integer count)
{
 if((llDetectedKey(0)==claimed_key) ||
 (llDetectedKey(0)==llGetOwner()))
 {
 state unclaimed;
 }
}

 The timer event handler will be called when the tip jar times out.

 timer()
{
 state unclaimed;
}

 The club tip jar is a very useful recipe that can be used for a variety of purposes in Second
Life. It allows workers at a club to earn money and optionally contribute money to the club
owner as well.

257Chapter 8: Commerce

 Recipe 8.4: Vendor Script
 A major component of Second Life commerce is the sale of objects. For example, many

of the objects created in this book could be sold for Linden Dollars. The easiest way to have a
store in Second Life is to construct a small region and place the objects for sale there. Then,
select each object and mark it for sale. If the “Sell Copy” option is selected, the original item
stays for some other avatar to buy. This is a popular means of selling items in Second Life.
Figure 8.5 shows a typical Second Life store.

 Figure 8.5: A Second Life Store

 However, if there are a large number of items for sale, it will take a large amount of space
to sell all of them. Additionally, many people sell items in malls in Second Life. If selling in
a mall, only a limited number of prims will be available for the store. To save on prim usage
and take up less space, vendor scripts are often used.

 Think of a vendor script as a kiosk. The vendor script shows pictures of each of the items
for sale. The avatar usually selects forward and backward buttons to move through the items
that are for sale. Figure 8.6 shows a vendor.

Scripting Recipes for Second Life258

 Figure 8.6: Using a Vendor Script

 The vendor script is controlled by a confi guration notecard. This notecard can be seen
in Listing 8.7.

 Listing 8.7: Vendor Notecard (Vendor.not)

 buyredcar
Encog's Red Car
25
buyyellowcar
Super Car
30
buyboat
Encog's Boat
35

 The lines in the confi guration fi le occur in groups of three. The fi rst group of three is:

 buyredcar
Encog's Red Car
25

259Chapter 8: Commerce

 The fi rst line specifi es the name of the texture that should be displayed when this item
is the current item. The second line specifi es the name of the item. The object being sold
must be in the vendor's object inventory. The second line specifi es this name. The third line
specifi es the cost, in Linden Dollars, for that item.

 A total of three scripts are used to run the vendor. They consist of the main script and
two scripts to control each of the arrows.

 Main Vendor Script

 The main vendor script does most of the work. There is also a navigational script inside
the forward and reverse buttons. However, the navigation scripts simply communicate to the
main script that it should navigate. The main vendor script is shown in Listing 8.8.

 Listing 8.8: Main Vendor Script (Vendor.not)

 integer index;

// for loading notecard
string notecardName;
key notecardQuery;
integer notecardIndex;
list notecardList;
integer price;
string itemName;

displayItem()
{
 string textureName = llList2String(notecardList,index*3);
 itemName = llList2String(notecardList,(index*3)+1);
 string p = llList2String(notecardList,(index*3)+2);
 price = (integer)p;
 string display = itemName + “\nL$” + p;
 llMessageLinked(LINK_ALL_OTHERS , 0, “:”+display, NULL_KEY);
 llSetLinkPrimitiveParams(5,[PRIM_TEXTURE, 1, textureName,
 <1,1,1>, <0,0,0>, 0]);
 llSetPayPrice(PAY_HIDE, [price, PAY_HIDE, PAY_HIDE,
 PAY_HIDE]);
}

default
{
 state_entry()
 {
 if(llGetListLength(notecardList)==0)
 {
 notecardName = “Config”;

Scripting Recipes for Second Life260

 state loading;
 }
 else
 {
 index = 0;
 displayItem();
 }
 }

 link_message(integer sender_num, integer num, string str,
 key id)
 {
 if(str==”back”)
 {
 index--;
 }

 if(str==”forward”)
 {
 index++;
 }

 if(index>=(llGetListLength(notecardList)/3))
 index = 0;

 if(index<0)
 {
 index = (llGetListLength(notecardList)/3);
 index--;
 }

 displayItem();
 }

 money(key id, integer amount)
 {
 if(amount>=price)
 {
 llGiveInventory(id,itemName);
 llSay(0,”Thanks for your purchase!”);
 }
 }

}

261Chapter 8: Commerce

state loading
{
 state_entry()
 {
 llSay(0,”Loading product data...”);
 notecardIndex = 0;
 notecardQuery = llGetNotecardLine(notecardName,
 notecardIndex++);
 }

 dataserver(key query_id, string data)
 {
 if (notecardQuery == query_id)
 {
 // this is a line of our notecard
 if (data == EOF)
 {
 llSay(0,”Products loaded...”);
 state default;

 } else
 {
 notecardList += [data];
 notecardQuery =
 llGetNotecardLine(notecardName,notecardIndex++);
 }
 }
 }
}

 The main vendor script begins by declaring some variables that it needs to perform.

 integer index;
string notecardName;
key notecardQuery;
integer notecardIndex;
list notecardList;
integer price;
string itemName;

 The index variable holds the index of the currently viewed item. The noteCardName
variable holds the name of the notecard being read. The notecardQuery variable holds
the query used to read the confi guration notecard. The notecardList variable holds
the list of items read from the notecard. The price variable holds the price of the current
item. The itemName variable holds the current item's price.

Scripting Recipes for Second Life262

 The displayItem function updates the vendor object to display the newly selected displayItem function updates the vendor object to display the newly selected displayItem
item. The displayItem function begins by obtaining the texture, which is the image of displayItem function begins by obtaining the texture, which is the image of displayItem
the item, from the list. Three data items are kept for each item. The fi rst three lines of the
 displayItem function read these items. displayItem function read these items. displayItem

 displayItem()
{
 string textureName = llList2String(notecardList,index*3);
 itemName = llList2String(notecardList,(index*3)+1);
 string p = llList2String(notecardList,(index*3)+2);

 The price variable is converted to an integer and stored. Next, the price variable
is displayed. A message is sent to all linked objects so that the buy button can display this
text.

 price = (integer)p;
 string display = itemName + "\nL$" + p;
 llMessageLinked(LINK_ALL_OTHERS , 0, ":"+display, NULL_KEY);

 The texture is displayed, and the pay price is set.

 llSetLinkPrimitiveParams(5,[PRIM_TEXTURE, 1, textureName,
 <1,1,1>, <0,0,0>, 0]);
 llSetPayPrice(PAY_HIDE, [price, PAY_HIDE, PAY_HIDE, PAY_
HIDE]);
}

 When the default state begins, the script checks to see whether any items are load-
ed. If there are no items loaded, the script enters the loading state.

 default
{
 state_entry()
 {
 if(llGetListLength(notecardList)==0)
 {
 notecardName = "Config";
 state loading;
 }

 If there are items loaded, the fi rst item is displayed.

 else
 {
 index = 0;
 displayItem();
 }
 }

263Chapter 8: Commerce

 The navigation buttons will send messages. The link_message event handler pro-
cesses these messages.

 link_message(integer sender_num, integer num, string str,
 key id)
 {

 The back button moves to the previous item.

 if(str=="back")
 {
 index--;
 }

 The forward button moves to the next item.

 if(str=="forward")
 {
 index++;
 }

 If the last item has been passed, wrap around to the fi rst item.

 if(index>=(llGetListLength(notecardList)/3))
 index = 0;

 If the fi rst item has been passed, wrap around to the last item.

 if(index<0)
 {
 index = (llGetListLength(notecardList)/3);
 index--;
 }

 Finally, display the item.

 displayItem();
 }

 When the user buys the item, the money event handler will be called.

 money(key id, integer amount)
 {
 if(amount>=price)
 {
 llGiveInventory(id,itemName);
 llSay(0,"Thanks for your purchase!");
 }
 }
}

Scripting Recipes for Second Life264

 If the user paid enough, give them their item.

 The loading state begins by submitting a query to read the notecard.

 state loading
{
 state_entry()
 {
 llSay(0,"Loading product data...");
 notecardIndex = 0;
 notecardQuery = llGetNotecardLine(notecardName,
 notecardIndex++);
 }

 As the lines are read from the note card, the dataserver event handler is called.

 dataserver(key query_id, string data)
 {
 if (notecardQuery == query_id)
 {

 Stop reading once the end is reached. Return to the default state.

 if (data == EOF)
 {
 llSay(0,"Products loaded...");
 state default;

 Add all of the data read in to the notecardList variable.

 } else
 {
 notecardList += [data];
 notecardQuery = llGetNotecardLine(notecardName,
 notecardIndex++);
 }
 }
 }
}

 There are three other scripts in the vendor object. The others handle navigation and
display of the textual information about the item.

 Vendor Navigation Scripts

 The vendor object has two buttons that allow navigation. Clicking the forward and back-
ward buttons will switch the current object for sale. The forward button's script can be seen
in Listing 8.8.

265Chapter 8: Commerce

 Listing 8.8: The Forward Button (VendorForward.lsl)

 default
{
 touch_start(integer total_number)
 {
 llMessageLinked(LINK_ALL_OTHERS , 0, "forward", NULL_KEY);
 }
}

 The forward button sends a forward message that will be picked up by the main vendor
script. The vendor object can also go backward. The backward button script is shown in
Listing 8.9.

 Listing 8.9: The Backward Button (VendorBack.lsl)

 default
{
 touch_start(integer total_number)
 {
 llMessageLinked(LINK_ALL_OTHERS , 0, "back", NULL_KEY);
 }
}

 The backward button simply sends a backward message that will be picked up by the
main vendor script. The buy button only has instructions on buying. To buy an item, pay the
object and the item will be purchased. However, the buy button is useful because it is right
under the texture. Adding text to the buy button will display just under the picture of the
item. The buy button is shown in Listing 8.10.

 Listing 8.10: The Buy Button (VendorBuy.lsl)

 default
{

 link_message(integer sender_num, integer num, string str,
 key id)
 {
 string prefix = llGetSubString(str,0,0);
 if(prefix==":")
 {
 string rest = llGetSubString(str,1,-1);
 llSetText(rest,<0,0,0>,1);

 }
 }
}

Scripting Recipes for Second Life266

 The buy button simply waits for messages, and then displays them.

 Summary
 Commerce is a very important aspect of Second Life. Some earn a living completely

through Second Life. This chapter showed how to create scripts that can pay avatars. An
example of such a script is a camping pad. Camping pays avatars to stay on a specifi c plot of
land.

 This chapter also showed how to collect money from avatars. The fi rst recipe that col-
lected money was the tip jar. Tip jars allow avatars to contribute money to the specifi ed ava-
tar. This chapter introduced two types of tip jars. The fi rst tip jar simply gives all tips to its
owner. The second type of tip jar splits the tips with its owner and the avatar who has claimed
the tip jar. This allows employees of clubs to receive tips from customers and give a cut to
the club owner.

 Another important commerce topic is rental property. Rental property is very common
in Second Life and will be covered in the next chapter.

267Chapter 8: Commerce

Scripting Recipes for Second Life268

269Chapter 9: Rental Property

 CHAPTER 9: RENTAL PROPERTY

 • Renting Property in Second Life
 • Creating a Rental Script
 • Controlling the Rental Door
 • Installing a Second Rental Door

 Rental property is very popular in Second Life. Rental property may be a plot of land, or
in a large building or a box high in the sky. Figure 9.1 shows an apartment building.

 Figure 9.1: An Apartment Building

 In Second Life some own many islands composed entirely of rental property. These are
often themed communities. Both residential and commercial property can be rented. Com-
mercial property rental is very popular. To make money selling goods in Second Life, mul-
tiple stores are often needed. The process of selling in Second Life generally involves renting
stores and continually removing under-performing stores and renting new stores.

Scripting Recipes for Second Life270

 Second Life is a world where it never rains, never gets cold, and avatars simply disappear
when their human user is not logged in. It is logical to wonder why someone would need a
“home” in Second Life. Yet residential rentals are very common. There are many reasons for
this. One of the most basic is personal expression. The home can be decorated to suit the
taste of the owner. This can include elements that would not be feasible in real life.

 There are a variety of rental scripts used in Second Life. Some are nothing more than a
cube that counts down when the rental period is up. Others control access to the area. This
chapter presents a rental script.

 Recipe 9.1: Rental Script
 The apartment building shown in Figure 9.1 has many units. Each unit has two doors.

The primary door is a sliding glass door that opens onto the balcony. The secondary door
opens to an interior hallway.

 Primary Door

 The primary door is the door that the apartment renter interacts with to pay the rent.
The primary door is a sliding glass door that will be placed on the balcony. Figure 9.2 shows
the primary door.

271Chapter 9: Rental Property

 Figure 9.2: The Primary Door

 The primary rental script contains many elements from previous scripts in this book.
Therefore, its complete listing is not reproduced here. The new components added by the
primary rental door will be covered in the following sections.

 The primary rental door begins by declaring a number of constants.

 // constants
float TIMER_CLOSE = 5.0;
integer DOOR_OPEN = 1;
integer DOOR_CLOSE = 2;
integer DAYSEC = 86400;

 The TIME_CLOSE constant defi nes the number of seconds to wait before closing the
door. The DOOR_OPEN and DOOR_OPEN and DOOR_OPEN DOOR_CLOSE constants represent the state of the door.
The DAYSEC content holds the number of seconds in a day.

 There are several confi guration constants defi ned as well. These can be changed to set
the rental agreement. These variables are all prefi xed with config_ .

 // configuration
integer config_rentwarning = 3;

Scripting Recipes for Second Life272

integer config_graceperiod = 3;
integer config_rate = 43;
integer config_min_days = 7;

 The config_rentwarning specifi es the number of days before the rent is due
that a warning will be sent. The config_graceperiod variable specifi es the number
of days that rent can be unpaid before the avatar is evicted. The config_rate variable
specifi es the rental rate per day. The config_min_days specifi es the minimum num-
ber of days for which the unit can be rented.

 // data about renter
string data_rented;
key data_rented_key;
integer data_leased_until;

 Additionally, other variables are defi ned for the script to function. The originalPos
variable tracks the original position of the door. The text variable is used to parse text
commands sent to the door. The allow list specifi es which avatars, in addition to the allow list specifi es which avatars, in addition to the allow
renter, can enter. Additionally, two fl ags are used to track which notices have been sent. This
prevents the notices from being re-sent.

 // other variables
vector originalPos;
string text;
list allow;

 The warningSent fl ag tracks if a warning has been sent about the rental due date
approaching. The reminderSent fl ag tracks if a rent reminder has been sent.

 integer warningSent = FALSE;
integer reminderSent = FALSE;

 The door function is called when the state of the door changes.

 door(integer what)
{

 First, the current size of the door is obtained.

 vector scale = llGetScale();

 Any timer events are cleared.

 llSetTimerEvent(0);

 if (what == DOOR_OPEN)
 {

 If the door is to be opened, play the door open sound. Then move the door over and
resize it to make it very small. This makes it appear to slide into the wall.

 llTriggerSound("doorOpen", 1);

273Chapter 9: Rental Property

 scale.x = 1;
 vector pos = llGetPos();
 pos.x+=2.5;
 llSetPos(pos);
 } else if (what == DOOR_CLOSE)
 {

 When the door is closed, return to the original size and play the door closing sound.

 llTriggerSound("doorClose", 1);
 scale.x = 5;
 }

 llSetScale(scale);
}

 The validateUser function is used from two places inside the door script. First,
if an avatar touches the door then the user must be validated. Second, when the secondary
door requests a validation of a user, this function is also used.

 integer validateUser(string who)
{
 integer shouldOpen = FALSE;

 The door should always open for the owner. The owner is usually the landlord.

 if(who==llKey2Name(llGetOwner()))
 shouldOpen = TRUE;

 The door should always open for the renter.

 if(data_rented==who)
 shouldOpen = TRUE;

 The door should open for anyone in the allow list. allow list. allow

 string name = llToUpper(who);
 if(llListFindList(allow,[name]) != -1)
 shouldOpen = TRUE;

 Return the shouldOpen status.

 return shouldOpen;
}

 The text above the rental door displays information regarding the current rental agree-
ment. Any time something happens that might change this text, call the updateText
function. The updateText function updates this text to the correct value.

 updateText()
{
 string display = "";

Scripting Recipes for Second Life274

 If the unit is rented by someone, display data about the agreement. Calculate the number
of days remaining.

 if(llStringLength(data_rented)>0)
 {
 display = "Rented by: " + data_rented;
 display+= "\nExpires in: " + timespan(data_leased_until -
llGetUnixTime());
 llSetTexture("rental-rented",3);
 }
 else
 {

 If the unit is not rented, display the terms.

 display = "Not rented\n";
 display+="Rent for " + (string)(config_rate*
 config_min_days) + "L/";

 The code below causes the script to call a week a week, not 7 days.

 if(config_min_days!=7)
 {
 display+=(string)config_min_days+" day(s).";
 }
 else
 {
 display+="week.";
 }

 Display the correct texture and update the string.

 llSetTexture("rental-forrent",3);
 display+="\nTo rent, right-click and choose pay.";
 }

 Finally, display the text.

 llSetText(display,<0,0,0>,1.0);
}

 The timespan function formats time as days, hours, minutes and seconds.

 string timespan(integer time)
{

 First, break the timespan into days, hours, minutes and seconds.

 integer days = time / DAYSEC;
 integer curtime = (time / DAYSEC) - (time % DAYSEC);
 integer hours = curtime / 3600;
 integer minutes = (curtime % 3600) / 60;

275Chapter 9: Rental Property

 integer seconds = curtime % 60;

 Display the amount of time remaining.

 return (string)llAbs(days) + " days, " + (string)llAbs(hours)
 + " hours, "
 + (string)llAbs(minutes) + " minutes, "
 + (string)llAbs(seconds) + " seconds";

}

 Like many of the other commerce scripts in this book, the only purpose of the default
state is to request debt permission and move to the ready state.

 default
{
 state_entry()
 {

 Request permission to remove money from the avatar. This is necessary to refund over-
payments.

 llRequestPermissions(llGetOwner(), PERMISSION_DEBIT);
 }

 run_time_permissions (integer perm)
 {

 If the permission request was successful, enter the ready state.

 if(perm & PERMISSION_DEBIT)
 {
 state ready;
 }
 }
}

 Once permission is obtained the ready state begins.

 state ready
{
 state_entry()
 {

 First, set up the payment prices. Calculate the minimum amount that the avatar would
pay to rent. Then set up four multiples of this amount.

 integer amount = config_rate * config_min_days;
 llSetPayPrice(PAY_HIDE,[amount,amount*2,amount*3,
 amount*4]);

Scripting Recipes for Second Life276

 Obtain the original position. This will be used to return the door to its original position
after closing.

 originalPos = llGetPos();

 The door must listen on channel zero to get commands from the renter. The door must
also listen on channel 72 for requests from the secondary door.

 llListen(0, "", NULL_KEY, "");
 llListen(72, "", NULL_KEY, "");

 Finally, update the text, as described earlier. Also, set a timer for every minute.

 updateText();
 llSetTimerEvent(60);
 }

 The money event handler is called whenever an avatar pays an amount to the door. It is
up to the money event handler to initially set up the lease, as well as extend it.

 money(key giver, integer amount)
 {

 First, check to see whether the door has already been rented. If it has already been
rented, this is likely an extension of rent. If the door has not been rented, a new lease should
be established.

 if(data_rented == "")
 {

 If there is no renter, this section will establish a new lease. First, thank the avatar for
renting. Then hand them a notecard explaining the terms of the lease. The notecard “En-
cogia Beach Apartments” should be replaced with whatever notecard makes sense for the
rental unit the script is being used with.

 llSay(0,
 "Thanks for renting! You may now open the doors.");
 llGiveInventory(giver,"Encogia Beach Apartments");

 Remember the name and key of the avatar who is renting.

 data_rented = llKey2Name(giver);
 data_rented_key = giver;

 Reset the allowed list to zero.

 allow = [];

 Next, check to see whether the amount paid by the avatar is an even multiple of the mini-
mum lease amount. If it is not, issue a refund for the amount overpaid.

 if ((amount % config_rate) != 0)
 {

277Chapter 9: Rental Property

 llSay(0,"You overpaid. Here is a partial refund");
 llGiveMoney(giver,(amount % config_rate));
 }

 Calculate the amount of time that the avatar paid for and credit that to their account. This
is done by calculating the data_leased_until time.

 integer credit = (amount - (amount % config_rate))
 /config_rate;
 data_leased_until = llGetUnixTime() + (credit
 * (24*60*60));

 Send an instant message to the owner of the apartment to let them know that a new lease
has been established.

 llInstantMessage(llGetOwner(), "NEW LEASE - $"
 + (string)(amount - (amount % config_rate))
 + "L - " + rentalInfo());

 Reset the reminder and warning fl ags.

 reminderSent = FALSE;
 warningSent = FALSE;
 }
 else
 {

 Money has been paid to an apartment that was already rented. First determine whether
it was the renter who paid.

 string who = llKey2Name(giver);

 if(who==data_rented)
 {

 If the renter has paid, extend the lease by the correct amount.

 integer credit = (amount - (amount %
 config_rate))/config_rate;
 data_leased_until = data_leased_until +
 (credit * (24*60*60));
 llSay(0,"Your lease has been extended.");

 Reset the warning and reminder fl ags.

 reminderSent = FALSE;
 warningSent = FALSE;
 }
 else
 {

Scripting Recipes for Second Life278

If money was paid by an avatar who is not the renter, refund the money and inform them
that this apartment is already rented.

 llGiveMoney(giver,amount);
 llSay(0,
"This unit is already rented, please find another to rent.");
 }
 }

 Finally, update the text to refl ect any changes caused by this payment.

 updateText();
 }

 Touching the door is a request to open the door.

 touch_start(integer total_number)
 {

 First determine who has touched the door, and call validateUser to see whether
the door should open.

 key who = llDetectedName(0);
 integer shouldOpen = validateUser(who);

 If the door should open, say hello to the avatar and enter the open_state state.

 if(shouldOpen == TRUE)
 {
 llSay(0,"Hello " + llDetectedName(0));
 door(DOOR_OPEN);
 state open_state;
 }
 else
 {

 If the door should not open, check to confi rm whether the unit is rented or not. If the unit
is not rented, give out a notecard that describes the rental unit.

 if(data_rented=="")
 {
 llGiveInventory(llDetectedKey(0),
 "Encogia Beach Apartments");
 }
 else
 {

 If the unit is rented, sound the door bell and announce the avatar who is at the door.

 llSay(0,llDetectedName(0) + " is at the door.");
 llTriggerSound("doorbell", 0.8);
 }
 }
 }

279Chapter 9: Rental Property

 The timer event handler is called once per minute. The timer keeps the text above the
door up to date, as well as sending out reminders and warnings.

 timer()
 {

 If the unit is in a rented state, check to see whether any action needs to be taken.

 if(data_rented!="")
 {

 If it is time to remind the user that their rent is due, send the reminder.

 if (data_leased_until > llGetUnixTime() &&
 data_leased_until - llGetUnixTime() <
 config_rentwarning * DAYSEC)
 {

 Only send the reminder if the reminderSent fl ag is false. If not for the
 reminderSent fl ag the rental script would bombard the user with a reminder every
minute.

 if(!reminderSent)
 {
 llInstantMessage(data_rented_key,
 "Your rent is due in "+
 (string)config_rentwarning
 +" days! - " + rentalInfo());
 reminderSent = TRUE;
 }
 }

 If the lease has expired, send the user a warning, that the rent is now due.

 else if (data_leased_until < llGetUnixTime()
 && llGetUnixTime() - data_leased_until
 < config_graceperiod * DAYSEC)
 {

 Only send the reminder if the warningSent fl ag is false. If not for the
 warningSent fl ag the rental script would bombard the user with a reminder every

minute.

 if (!warningSent)
 {
 llInstantMessage(data_rented_key,
 "Your rent is due! - " + rentalInfo());
 llInstantMessage(llGetOwner(),
 "RENT DUE - " + rentalInfo());
 warningSent = TRUE;
 }

Scripting Recipes for Second Life280

 llSetTexture("lease-ex",ALL_SIDES);
 }

 Check to see whether the lease has expired and the grace period is up. If this is the
case, evict the avatar. The avatar is sent a message telling them this. Further, the owner is
informed that the apartment should be cleaned out.

 else if (data_leased_until < llGetUnixTime())
 {
 llInstantMessage(data_rented, "Your lease has
expired. Please clean up the space or contact the space owner.");
 llInstantMessage(llGetOwner(), "LEASE EXPIRED:
CLEANUP! - " + rentalInfo());

 The rental script sets up for a new tenant. However, the rental script cannot return the
items from the evicted owner. This is the landlord’s responsibility.

 data_rented = "";
 data_rented_key = "";
 allow = [];
 reminderSent = FALSE;
 warningSent = FALSE;
 }

 Update the text for changes that may have occurred.

 updateText();
 }
 }

 If the door moves, update the original position.

 moving_end()
 {
 originalPos = llGetPos();
 }

 The primary door is always listening on channels zero and 72. As soon as a message is
received, call the listen event handler.

 listen(integer channel, string name, key id, string message)
 {

 Any message on channel 72 is a request from the secondary door to validate a user. Re-
quests from the secondary door will be in this form:

 [Door Name] [Avatar Name] [Security Code]

 The door name is the object name of both the primary and secondary door. If there is
to be a secondary door, it is vital that it has the same object name as the primary door. This
links the primary and secondary doors.

281Chapter 9: Rental Property

 The avatar name is the name of the avatar that is to be validated. The security code is a
random number generated by the secondary door. This code must be returned to the sec-
ondary door for it to open. This provides a very minimal degree of security from a spoofed
command to the secondary door.

 if(channel==72)
 {

 The command comes in as a comma separated value (CSV) string. Convert the CSV
string to a list and obtain the individual values.

 list l = llCSV2List(message);
 string n = llList2String(l,0); // name
 string w = llList2String(l,1); // who
 string c = llList2String(l,2); // code

 If this is a message to this door, attempt to validate the user.

 if(name==llGetObjectName())
 {

 If the user is validated successfully, the code is returned to the secondary door. This will
cause the secondary door to open.

 if(validateUser(w)==TRUE)
 {
 llSay(72,c);
 }
 else
 {

 If the user did not validate, tell them to see the balcony door for rental terms.

 llSay(0,"To rent an apartment please visit the
door located on the balcony.");
 }
 }

 }

 The rest of the listen event handler is the same as Recipe 3.4, the multi-user lockable
door. This allows commands to be spoken to the door by the renter, which in turn allows the
list of approved avatars to be maintained. For information on these commands, or how they
are processed, refer to Recipe 3.4.

 When the door is opened, the open_state state is entered.

 state open_state
{
 state_entry()
 {

Scripting Recipes for Second Life282

 Begin by setting a timer to automatically close the door.

 llSetTimerEvent(TIMER_CLOSE);
 }

 touch_start(integer num)
 {

 Close the door if the user touches the door and does not wait for the timer.

 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state ready;
 }

 timer()
 {

 Close the door if the timer elapses.

 door(DOOR_CLOSE);
 llSetPos(originalPos);
 state ready;
 }

 Close the door if the door is moved while in an open state.

 moving_start()
 {
 door(DOOR_CLOSE);
 state ready;
 }
}

 The script examined in this section processes the primary door. The secondary door is
optional.

 Secondary Door

 The secondary door links to the primary door. All of the secondary door's information
is obtained from the primary door. Whenever someone tries to open the secondary door,
the secondary door asks the primary door for permission. The secondary door is optional.
For the apartment complex shown in Figure 9.1 the secondary door is open to the building's
interior hallways. Figure 9.3 shows the secondary door.

283Chapter 9: Rental Property

 Figure 9.3: The Secondary Door

 The secondary door is based on Recipe 3.2, the open door. The main difference is that
the touch event handler seeks permission from the primary door. A listen event han-
dler is used to receive permission from the primary door to open. Only those parts that are
different to Recipe 3.2 will be discussed. For more information on the mechanics of door
opening, refer to Recipe 3.2.

 This recipe creates a global variable to hold the last code sent to the server. If a message,
with this code, is received, the door opens.

 string lastCode;

 When the door starts up the original position is saved. The object name is also displayed.
The object name should be similar to “Apartment 8A”. It is important that this name be the
same as the primary door's name.

 state_entry()
 {
 originalPos = llGetPos();
 llSetText(llGetObjectName(),<0,0,0>,1.0);
 llListen(72, "", NULL_KEY, "");
 }

Scripting Recipes for Second Life284

 When the door is touched, calculate a random number. Build a command based on the
object name, avatar name and random code. Refer to the previous section about the master
door to view the format of this command. This command is then transmitted on channel 72.

 touch_start(integer total_number)
 {
 lastCode = (string)llRound(llFrand(1000000.));
 list l = [llGetObjectName(),llDetectedName(0),lastCode];
 string str = llList2CSV(l);
 llSay(72,str);
 }

 The listen event handler waits for commands from the primary door.

 listen(integer channel, string name, key id, string message)
 {

 If the primary door has requested the secondary to open, then the open_date state.

 if(message==lastCode)
 {
 door(DOOR_OPEN);
 state open_state;
 }
 }
}

 The rest of this script is the same as Recipe 3.2, the open door script. Refer to Recipe 3.2
for additional information about this script.

 Other Rental Considerations
 The rental script automates most of the rental process. However, it cannot perform ev-

ery task. In particular, it cannot handle objects added by avatars. When an avatar rents a
unit, they will likely want to furnish the area. To do this, the landlord needs to set the permis-
sions to allow this. This can be accomplished in two ways.

 • Set permissions so that anyone can drop items in the rental units
 • Create a group that is allowed to drop items in the rental units

 There are pros and cons to both approaches. Additionally, many rental units in Second
Life use one method or the other. There does not seem to be a clear choice as to which
method.

 If the landlord sets the permissions so that anyone can add objects, the new renter can
begin using the unit just after it has been rented. They will not have to wait to be added to a
group. However, anyone will be able to create objects. As a result, the landlord must keep
very close tabs on the objects created, and delete any extras from unauthorized users.

285Chapter 9: Rental Property

 Creating the group is more secure. However, every new renter must be added to the
group, as well as every evicted user removed. While this is extra work for the landlord, it
also means that there will be fewer unauthorized objects. However, renters must wait to be
added to the group. This requires the landlord to keep a close eye on new rental requests. A
renter will not be happy if they rent the unit for seven days, and it takes the landlord fi ve days
to add them to the correct group.

 Another consideration that landlords should be aware of is teleporting. A renter will
most likely create a landmark to the inside of the rental unit. However, when the rent is
up this allows the avatar to teleport directly back, skipping the doors. This is undesirable.
Further, guests of the renter may create such land marks. This allows them to bypass the
renter's door.

 To protect against direct teleporting, set a landing point. Usually this landing point will
be just in front of the rental complex. A landing point is set from the “About Land” window.
Select the “Options” tab. This window is shown in Figure 9.4.

 Figure 9.4: Setting a Landing Point

 Once set, avatars will only teleport to that point. This helps when avatars attempt to
teleport around doors.

Scripting Recipes for Second Life286

 Of course doors do not provide absolute security. Many users know how to get around
a door. By adjusting the camera angle an avatar can see through a door. Then select some-
thing to sit on. The avatar will pass through the locked door. Despite this, doors add a basic
level of security. They keep out inexperienced users, as well as make it slightly more diffi cult
for advanced users.

 Summary
 The chapter expanded on the commerce scripts, introduced in Chapter 8, to include a

rental script. Rental property is very popular in Second Life. The rental script automates
much of the rental process. The script collects rent from avatars, handles rent extensions
and sends warnings and notices when the lease is due to expire.

 However, it is up to the landlord to remove objects left by the avatar after the lease ex-
pires. The landlord must keep an eye on objects left by other non-renters, if the security is set
such that anyone can leave objects. A group can be created to limit who can create objects.

 Second Life shares many attributes with video games. An avatar can have a health indica-
tor between zero and 100%, just like a shootout style video game. This health is decreased by
weapons. Chapter 10 shows how to create weapons in Second Life.

287Chapter 9: Rental Property

Scripting Recipes for Second Life288

289Chapter 10: Weapons

 CHAPTER 10: WEAPONS

 • Creating a Basic Gun
 • Creating a Multi Bullet Gun
 • Damage Bullets
 • Push Bullets
 • Explosion Bullets

 It is possible to be hurt in Second Life. However, this may only occur in certain areas.
When a user is in one of those areas they will notice a heart, and percentage number at the
top of their screen. This percentage number indicates the health of the avatar. If this percent-
age becomes zero, the avatar dies.

 Death is not all that bad in Second Life. When an avatar dies, they are warped back to
wherever the home position is set. Dying is exactly the same as selecting the World menu
and then “Teleport Home”. Nothing more than that! When an avatar dies it loses nothing, it
is simply teleported home.

 Figure 10.1 shows an avatar in an area where damage can be infl icted. Notice the heart
symbol at the top of the screen.

Scripting Recipes for Second Life290

 Figure 10.1: An Area that Allows Damage

 This chapter will focus on guns, which are the most common type of weapon in Second
Life. Bullets are just as important as the gun that fi res them. This chapter presents recipes
for several different bullet types.

 Recipe 10.1: Basic Gun
 The fi rst gun presented in this chapter is a basic single-bullet gun. This gun should be

worn on the avatar and mouselook used to fi re it. Mouselook is a special mode of Second Life
where the mouse controls what the avatar is looking at. In mouselook mode a small cross-
hair can be seen at the center of the screen. Figure 10.2 shows mouselook mode.

291Chapter 10: Weapons

 Figure 10.2: Mouselook Mode

 When the mouse button is clicked, the weapon will be fi red. Movement works a little
differently in mouselook mode. However, it is still controlled by the cursor keys. It is best to
experiment with moving in mouselook mode to understand how it works.

 While using the basic gun, the avatar holds the gun ready to be fi red. Figure 10.3 shows
an avatar holding the basic gun.

Scripting Recipes for Second Life292

 Figure 10.3: Holding a Gun

 Two scripts make up the basic gun. The fi rst script handles the gun itself. The second
script is for the bullet. The effect produced by the gun is more a function of the bullet than
the gun.

 Basic Gun Script

 First, a basic single-bullet gun script is examined. The script for the basic gun can be
seen in Listing 10.1.

 Listing 10.1: Basic Gun (BasicGun.lsl)

 float SPEED = 80.0;
integer LIFETIME = 7;

float DELAY = 0.2;
vector vel;
vector pos;
rotation rot;
integer have_permissions = FALSE;

integer armed = TRUE;

293Chapter 10: Weapons

string bulletName = "bullet";

fire()
{
 if (armed)
 {
 armed = FALSE;
 rot = llGetRot();
 vel = llRot2Fwd(rot);
 pos = llGetPos();
 pos = pos + vel;
 pos.z += 0.75;

 vel = vel * SPEED;

 llTriggerSound("shoot", 1.0);
 llRezObject(bulletName, pos, vel, rot, LIFETIME);

 llSetTimerEvent(DELAY);
 }
}

default
{
 state_entry()
 {
 if (!have_permissions)
 {
 llRequestPermissions(llGetOwner(),
 PERMISSION_TRIGGER_ANIMATION|
 PERMISSION_TAKE_CONTROLS);
 }
 }
 on_rez(integer param)
 {
 llPreloadSound("shoot");
 }

 run_time_permissions(integer permissions)
 {
 if (permissions == PERMISSION_TRIGGER_ANIMATION|
 PERMISSION_TAKE_CONTROLS)
 {
 llTakeControls(CONTROL_ML_LBUTTON, TRUE, FALSE);

Scripting Recipes for Second Life294

 llStartAnimation("hold_R_handgun");
 have_permissions = TRUE;
 }
 }

 attach(key attachedAgent)
 {
 if (attachedAgent != NULL_KEY)
 {
 llRequestPermissions(llGetOwner(),
 PERMISSION_TRIGGER_ANIMATION|
 PERMISSION_TAKE_CONTROLS);
 }
 else
 {
 if (have_permissions)
 {
 llStopAnimation("hold_R_handgun");
 llStopAnimation("aim_R_handgun");
 llReleaseControls();
 llSetRot(<0,0,0,1>);
 have_permissions = FALSE;
 }
 }
 }

 control(key name, integer levels, integer edges)
 {
 if (((edges & CONTROL_ML_LBUTTON) == CONTROL_ML_LBUTTON)
 &&((levels & CONTROL_ML_LBUTTON) ==
 CONTROL_ML_LBUTTON))
 {
 fire();
 }
 }

 timer()
 {
 llSetTimerEvent(0.0);
 armed = TRUE;
 }

}

 The basic gun begins by defi ning some variables.

 float SPEED = 80.0;

295Chapter 10: Weapons

integer LIFETIME = 7;

float DELAY = 0.2;
vector vel;
vector pos;
rotation rot;
integer have_permissions = FALSE;

integer armed = TRUE;
string bulletName = "bullet";

 The SPEED variable defi nes how fast the bullet will be traveling when fi red from the
gun. The LIFETIME variable defi nes how many sections the bullet will last. The DELAY
variable specifi es how much time must elapse between each fi ring of the gun.

 The vel and pos variables hold the initial velocity and position of the bullet. The
 rot variable holds the bullet's initial rotation. The have_permissions fl ag tracks
whether the gun has permission to animate the avatar. These animations cause the avatar to
hold the gun in a realistic manner. The armed variable is true if the gun is ready to fi re. The
 bulletName variable holds the name of the bullet to be fi red.

 The fire function is called whenever the gun is to be fi red.

 fire()
{

 First, the fire function checks to see whether the gun is armed.

 if (armed)
 {

 The position and initial velocity are calculated for the bullet.

 armed = FALSE;
 rot = llGetRot();
 vel = llRot2Fwd(rot);
 pos = llGetPos();
 pos = pos + vel;
 pos.z += 0.75;

 vel = vel * SPEED;

 A shooting sound is made and the bullet is rezzed. It is rezzed with the previously deter-
mined velocity. This causes the bullet to immediately begin heading towards its target.

 llTriggerSound("shoot", 1.0);
 llRezObject(bulletName, pos, vel, rot, LIFETIME);

 A timer is set to indicate when the gun should rearm itself.

Scripting Recipes for Second Life296

 llSetTimerEvent(DELAY);
 }
}

 The default state begins by requesting permissions.

 default
{
 state_entry()
 {
 if (!have_permissions)
 {

 Two permissions are required for the gun script. The fi rst is the animation permission.
This allows the script to animate how the avatar holds the gun. The second is the permission
to take the controls. This allows the avatar to fi re the gun by clicking when in mouselook
mode.

 llRequestPermissions(llGetOwner(),
 PERMISSION_TRIGGER_ANIMATION| PERMISSION_TAKE_CON-
TROLS);
 }
 }

 Preload the shooting sound when the object is rezzed.

 on_rez(integer param)
 {
 llPreloadSound("shoot");
 }

 Once permission is obtained, animate the avatar with the “hold_R_handgun” built in ani-
mation. Also take the controls for the left mouse button. The “hold_R_handgun” is a built in
animation. For a complete list of built in animations, refer to Appendix B.

 run_time_permissions(integer permissions)
 {
 if (permissions == PERMISSION_TRIGGER_ANIMATION|
 PERMISSION_TAKE_CONTROLS)
 {
 llTakeControls(CONTROL_ML_LBUTTON, TRUE, FALSE);
 llStartAnimation("hold_R_handgun");
 have_permissions = TRUE;
 }
 }

 The attach function is called whenever the avatar wears or removes the gun.

 attach(key attachedAgent)
 {

297Chapter 10: Weapons

 If the gun is being attached, request the appropriate controls.

 if (attachedAgent != NULL_KEY)
 {
 llRequestPermissions(llGetOwner(),
 PERMISSION_TRIGGER_ANIMATION|
 PERMISSION_TAKE_CONTROLS);
 }
 else
 {

 If the gun is being detached, stop the animations and release controls.

 if (have_permissions)
 {
 llStopAnimation("hold_R_handgun");
 llStopAnimation("aim_R_handgun");
 llReleaseControls();
 llSetRot(<0,0,0,1>);
 have_permissions = FALSE;
 }
 }
 }

 The control event handler is called when the avatar clicks the mouse button in
mouseview mode.

 control(key name, integer levels, integer edges)
 {
 if (((edges & CONTROL_ML_LBUTTON) == CONTROL_ML_LBUTTON)
 &&((levels & CONTROL_ML_LBUTTON) ==
 CONTROL_ML_LBUTTON))
 {

 If the button has been clicked, fi re the bullet.

 fire();
 }
 }

 The timer event sets armed back to true. This causes a delay between rounds fi red.

 timer()
 {
 llSetTimerEvent(0.0);
 armed = TRUE;
 }
}

 Of course the gun is only half of the gun object. The bullet must also be considered.

Scripting Recipes for Second Life298

 Basic Bullet Script

 The bullets are bigger than real life bullets. This makes it easier to see the bullet. Figure
10.4 shows a typical bullet next to the gun. The bullet is fairly large, relative to the size of the
gun.

 Figure 10.4: Basic Bullet

 The script for the basic bullet is shown in Listing 10.2.

 Listing 10.2: Basic Bullet (BulletBasic.lsl)

 default
{
 state_entry()
 {
 llSetStatus(STATUS_DIE_AT_EDGE, TRUE);
 llSetTimerEvent(7);
 llSetDamage(20);
 }

 on_rez(integer i)

299Chapter 10: Weapons

 {
 llSetBuoyancy(1.0);// Make bullet float and not fall
 llCollisionSound("", 1.0);// Disable collision sounds
 }

 collision_start(integer total_number)
 {
 llDie();
 }

 land_collision_start(vector pos)
 {
 llDie();
 }

 timer()
 {
 llDie();
 }
}

 The bullet is a basic 20% damage bullet. When an avatar is touched by this bullet, 20%
damage is infl icted.

 default
{

 The bullet is set up so that it dies at the edge of a sim. A timer is set for 7 seconds, the
bullet will vanish at that point. Finally, the damage value is set.

 state_entry()
 {
 llSetStatus(STATUS_DIE_AT_EDGE, TRUE);
 llSetTimerEvent(7);
 llSetDamage(20);
 }

 on_rez(integer i)
 {
 llSetBuoyancy(1.0);
 llCollisionSound("", 1.0);
 }

 The bullet should vanish if it hits something.

 collision_start(integer total_number)
 {
 llDie();
 }

Scripting Recipes for Second Life300

 The bullet should vanish if it hits land.

 land_collision_start(vector pos)
 {
 llDie();
 }

 The bullet should die when the timer is up.

 timer()
 {
 llDie();
 }
}

 The basic gun fi res only one type of bullet. The next recipe shows how to create a gun
that can fi re a number of different bullet types.

 Recipe 10.2: Multi Bullet Gun
 The recipe in this chapter shows how to produce a multi-bullet gun. Six different bullet

types are supported. These bullets are summarized in Table 10.1.

 Table 10.1: Bullet Types

Bullet Name Purpose
Explode This bullet explodes when it hits something. It does no damage but

produces a nice effect.
Kill This bullet infl icts 100% damage and will instantly kill any avatar it

hits.
Push The push bullet pushes the avatar about 300 meters into the air. No

damage is infl icted.
20% The 20% bullet infl icts 20% of damage on the avatar.
Blank The blank bullet creates no damage. It hits objects, so it could be

used to shoot a can off a fence.
Cage The cage bullet does not cause any damage, but it places a cage

around the avatar it hits. The cage vanishes after one minute.

 To switch between bullets simply say “load”. This presents the avatar with the menu
seen in Figure 10.5.

301Chapter 10: Weapons

 Figure 10.5: Load the Gun

 The gun script for the multi-bullet gun is shown in Listing 10.3.

 Listing 10.3: Multi Bullet Gun (MultiGun.lsl)

 integer CHANNEL = 44;
float SPEED = 80.0;

float DELAY = 0.2;
vector vel;
vector pos;
rotation rot;
integer have_permissions = FALSE;

integer armed = TRUE;

string bulletName = "bullet:Blank";

fire()
{

Scripting Recipes for Second Life302

 if (armed)
 {
 armed = FALSE;
 rot = llGetRot();
 vel = llRot2Fwd(rot);
 pos = llGetPos();
 pos = pos + vel;
 pos.z += 0.75;

 vel = vel * SPEED;

 llTriggerSound("shoot", 1.0);
 llRezObject(bulletName, pos, vel, rot, 10);

 llSetTimerEvent(DELAY);
 }
}

load()
{
 list bulletList = [];
 string bullet = "";
 integer i = 0;
 do
 {
 bullet = llGetInventoryName(INVENTORY_OBJECT,i);

 if(bullet!="")
 {
 list cmd = llParseString2List(bullet,[":"],[]);

 if(llList2String(cmd,0)=="bullet")
 bulletList+=llList2String(cmd,1);
 }
 i++;
 } while(bullet!="");
 llDialog(llGetOwner(),"Choose a bullet type:",bulletList,
 CHANNEL);
}

default
{
 state_entry()
 {
 if (!have_permissions)
 {

303Chapter 10: Weapons

 llRequestPermissions(llGetOwner(),
 PERMISSION_TRIGGER_ANIMATION|
 PERMISSION_TAKE_CONTROLS);
 }
 llListen(0,"",llGetOwner(),"");
 llListen(CHANNEL,"",llGetOwner(),"");
 llOwnerSay("Say 'load' to change bullet type");
 }
 on_rez(integer param)
 {
 llPreloadSound("shoot");
 }

 run_time_permissions(integer permissions)
 {
 if (permissions == PERMISSION_TRIGGER_ANIMATION|
 PERMISSION_TAKE_CONTROLS)
 {
 llTakeControls(CONTROL_ML_LBUTTON, TRUE, FALSE);
 llStartAnimation("hold_R_handgun");
 have_permissions = TRUE;
 }
 }

 listen(integer channel, string name, key id, string message)
 {
 if(id==llGetOwner() && channel ==0)
 {
 if(llToLower(message) == "load")
 {
 load();
 }
 }
 else if(channel==CHANNEL)
 {
 bulletName = "bullet:" + message;
 llOwnerSay(message + " now loaded");
 }
 }

 attach(key attachedAgent)
 {
 if (attachedAgent != NULL_KEY)
 {
 llRequestPermissions(llGetOwner(),

Scripting Recipes for Second Life304

 PERMISSION_TRIGGER_ANIMATION|
 PERMISSION_TAKE_CONTROLS);
 }
 else
 {
 if (have_permissions)
 {
 llStopAnimation("hold_R_handgun");
 llStopAnimation("aim_R_handgun");
 llReleaseControls();
 llSetRot(<0,0,0,1>);
 have_permissions = FALSE;
 }
 }
 }

 control(key name, integer levels, integer edges)
 {
 if (((edges & CONTROL_ML_LBUTTON) == CONTROL_ML_LBUTTON)
 &&((levels & CONTROL_ML_LBUTTON) ==
 CONTROL_ML_LBUTTON))
 {
 fire();
 }
 }

 timer()
 {
 llSetTimerEvent(0.0);
 armed = TRUE;
 }

}

 Much of the script for the multi-bullet gun is the same as the basic gun. Only the new
parts will be discussed. For more information on the mechanics of fi ring a bullet, refer to
Recipe 10.1.

 Because of the menu used to load a round, the script must listen on a specifi c chan-
nel for menu choices. The channel chosen is 44. The multi-bullet gun uses the string
 bulletName to hold the current bullet. Notice how the bullet name is prefi xed with
“bullet:”? Any bullet added to the inventory of the gun object shows up in the menu if it is
prefi xed in this way. This allows the gun to be expanded easily with even more bullet types.

 integer CHANNEL = 44;
string bulletName = "bullet:Blank";

305Chapter 10: Weapons

 The load function is called when the user has selected to load bullets into the gun.

 load()
{

 The script begins by creating variables to hold the list of bullets.

 list bulletList = [];
 string bullet = "";
 integer i = 0;

 Next, the load function loops across every inventory object. This is done using the
 llGetInventoryName function.

 do
 {
 bullet = llGetInventoryName(INVENTORY_OBJECT,i);

 Next, the bullet name is checked to see whether it is prefi xed with “bullet:”. If this is the
case, the bullet name is added to the list.

 if(bullet!="")
 {
 list cmd = llParseString2List(bullet,[":"],[]);

 if(llList2String(cmd,0)=="bullet")
 bulletList+=llList2String(cmd,1);
 }
 i++;
 } while(bullet!="");

 Once an empty string is returned, the end of the script has been reached. The menu is
then displayed and the user allowed to pick one.

 llDialog(llGetOwner(),"Choose a bullet type:",bulletList,
 CHANNEL);
}

 The listen event handler is called when the user either says something or loads a
new bullet.

 listen(integer channel, string name, key id, string message)
{

 If something has been said by the owner, check to see whether the user said “load”. If
the user said “load”, call the load function. The load function prompts the user for a
bullet type.

 if(id==llGetOwner() && channel ==0)
 {
 if(llToLower(message) == "load")
 {

Scripting Recipes for Second Life306

 load();
 }
 }

 If the message is from the menu, load the correct bullet type.

 else if(channel==CHANNEL)
 {
 bulletName = "bullet:" + message;
 llOwnerSay(message + " now loaded");
 }
}

 The next section will explain how the different bullets were created.

 Bullets for the Multi Bullet Gun
 There is a total of six bullets that the multi-bullet gun comes preloaded with, as summa-

rized in Table 10.1. These bullet types can be broken down into the following groups.

 • Damage Bullets
 • Explosion Bullets
 • Push Bullets
 • Cage Bullets

 Each of these group types will be covered in the next sections.

 Damage Bullets

 Three different damage bullets are included with the gun. The blank bullet does not
cause any damage. The 20% bullet infl icts 20% damage. The kill bullet infl icts 100% damage
and kills an avatar instantly on impact. The script for the blank bullet is shown in Listing
10.4.

 Listing 10.4: Blank Bullet (BulletBlank.lsl)

 default
{
 on_rez(integer delay)
 {
 llSetStatus(STATUS_DIE_AT_EDGE, TRUE);
 llSetDamage(0);
 llSetBuoyancy(1.0);// Make bullet float and not fall
 llCollisionSound("", 1.0);// Disable collision sounds

 if (delay >0)
 {
 llSetTimerEvent(delay);
 }

307Chapter 10: Weapons

 }

 collision_start(integer total_number)
 {
 }

 land_collision_start(vector pos)
 {
 }

 timer()
 {
 llDie();
 }

}

 The blank bullet causes no damage because of the following line:

 llSetDamage(0);

 While zero damage is the default behavior, the above line emphasizes that for demonstra-
tion purposes.

 The gun also includes a 20% damage bullet. The 20% damage bullet is shown in Listing
10.5.

 Listing 10.5: 20% Bullet (Bullet20.lsl)

 default
{
 on_rez(integer delay)
 {
 llSetStatus(STATUS_DIE_AT_EDGE, TRUE);
 llSetDamage(20);
 llSetBuoyancy(1.0);// Make bullet float and not fall
 llCollisionSound("", 1.0);// Disable collision sounds

 if (delay >0)
 {
 llSetTimerEvent(delay);
 }
 }

 collision_start(integer total_number)
 {
 }

Scripting Recipes for Second Life308

 land_collision_start(vector pos)
 {
 }

 timer()
 {
 llDie();
 }

}

 The 20% bullet specifi es 20% damage with the following line.

 llSetDamage(20);

 The fi nal damage bullet provided is a kill bullet. The kill bullet can be seen in Listing
10.6.

 Listing 10.6: Kill Bullet (BulletKill.lsl)

 default
{
 on_rez(integer delay)
 {
 llSetStatus(STATUS_DIE_AT_EDGE, TRUE);
 llSetDamage(100);
 llSetBuoyancy(1.0);// Make bullet float and not fall
 llCollisionSound("", 1.0);// Disable collision sounds

 if (delay >0)
 {
 llSetTimerEvent(delay);
 }
 }

 collision_start(integer total_number)
 {
 }

 land_collision_start(vector pos)
 {
 }

 timer()
 {
 llDie();

309Chapter 10: Weapons

 }

}

 The kill bullet specifi es 100% damage, an instant kill, with the following line.

 llSetDamage(100);

 The damage bullets are all the same, except for the amount of damage they infl ict.

 Explosion Bullets

 The explosion bullet causes a small explosion on impact with either an agent, an object
or the ground. The explosion bullet can be seen in Listing 10.7.

 Listing 10.7: Explosion Bullet (BulletExplode.lsl)

 fakeMakeExplosion(integer particle_count, float particle_scale,
float particle_speed,
 float particle_lifetime, float source_cone,
string source_texture_id,
 vector local_offset)
{
 //local_offset is ignored
 llParticleSystem([
 PSYS_PART_FLAGS,PSYS_PART_INTERP_COLOR_MASK|
 PSYS_PART_INTERP_SCALE_MASK|
 PSYS_PART_EMISSIVE_MASK|PSYS_PART_WIND_MASK,
 PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_ANGLE_CONE,
 PSYS_PART_START_COLOR, <1.0, 1.0, 1.0>,
 PSYS_PART_END_COLOR, <1.0, 1.0, 1.0>,
 PSYS_PART_START_ALPHA, 0.50,
 PSYS_PART_END_ALPHA, 0.25,
 PSYS_PART_START_SCALE, <particle_scale,
 particle_scale, 0.0>,
 PSYS_PART_END_SCALE, <particle_scale * 2 +
 particle_lifetime, particle_scale * 2 +
 particle_lifetime, 0.0>,
 PSYS_PART_MAX_AGE, particle_lifetime,
 PSYS_SRC_ACCEL, <0.0, 0.0, 0.0>,
 PSYS_SRC_TEXTURE, source_texture_id,
 PSYS_SRC_BURST_RATE, 1.0,
 PSYS_SRC_ANGLE_BEGIN, 0.0,
 PSYS_SRC_ANGLE_END, source_cone * PI,
 PSYS_SRC_BURST_PART_COUNT, particle_count / 2,
 PSYS_SRC_BURST_RADIUS, 0.0,
 PSYS_SRC_BURST_SPEED_MIN, particle_speed / 3,

Scripting Recipes for Second Life310

 PSYS_SRC_BURST_SPEED_MAX, particle_speed * 2/3,
 PSYS_SRC_MAX_AGE, particle_lifetime / 2,
 PSYS_SRC_OMEGA, <0.0, 0.0, 0.0>
]);
}

explode()
{
 fakeMakeExplosion(80, 1.0, 13.0, 2.2, 1.0, "fire",
 <0.0, 0.0, 0.0>);
 llSleep(.5);
 fakeMakeExplosion(80, 1.0, 13.0, 2.2, 1.0, "smoke",
 <0.0, 0.0, 0.0>);
 llSleep(1);
 llParticleSystem([]);
}

default
{
 on_rez(integer delay)
 {
 llSetStatus(STATUS_DIE_AT_EDGE, TRUE);
 llSetDamage(0);
 llSetBuoyancy(1.0); // Make bullet float and not fall
 llCollisionSound("", 1.0); // Disable collision sounds

 if (delay >0)
 {
 llSetTimerEvent(delay);
 }
 }

 collision_start(integer total_number)
 {
 explode();
 }

 land_collision_start(vector pos)
 {
 explode();
 }

 timer()
 {
 llDie();
 }

311Chapter 10: Weapons

}

 The explosion bullet uses the explosion script from Recipe 4.5. The following two event
handlers cause the explosion.

 collision_start(integer total_number)
{
 explode();
}

land_collision_start(vector pos)
{
 explode();
}

 When the bullet collides with either an object, avatar or land the explosion function is
called. For more information on how the explosion is created see recipe 4.5.

 Push Bullets

 The push bullet applies a large push to any avatar it hits. The avatar is sent high into the
sky. No damage is caused. The push bullet can be seen in Listing 10.8.

 Listing 10.8: Push Bullet (BulletPush.lsl)

 default
{
 on_rez(integer delay)
 {
 llSetStatus(STATUS_DIE_AT_EDGE, TRUE);
 llSetDamage(0);
 llSetBuoyancy(1.0);// Make bullet float and not fall
 llCollisionSound("", 1.0);// Disable collision sounds

 if (delay >0)
 {
 llSetTimerEvent(delay);
 }
 }

 collision_start(integer total_number)
 {
 if (llDetectedType(0) & AGENT)
 {
 llPushObject(llDetectedKey(0), <0,0,2147483647>,
 ZERO_VECTOR, FALSE);

Scripting Recipes for Second Life312

 }
 llDie();
 }

 timer()
 {
 llDie();
 }

}

 The push bullet detects a collision using the collision_start event handler.

 collision_start(integer total_number)
{

 Once a collision is detected, it is checked to see whether it collided with an avatar.

 if (llDetectedType(0) & AGENT)
 {

 If the collision was with an avatar, push the avatar up with maximum force.

 llPushObject(llDetectedKey(0), <0,0,2147483647>, ZERO_
VECTOR, FALSE);
 }
 llDie();
}

 Once the push has been applied, the bullet is no longer needed and is destroyed with a
call to llDie .

 Cage Bullets

 The cage bullet places a cage around the avatar it hits. The cage disappears in a minute.
While the cage is blocking the avatar's path, the avatar can still teleport away. An avatar in a
cage can be seen in Figure 10.6.

313Chapter 10: Weapons

 Figure 10.6: An Avatar in a Cage

 The cage bullet can be seen in Listing 10.9.

 Listing 10.9: Cage Bullet (BulletCage.lsl)

 default
{
 on_rez(integer delay)
 {
 llSetStatus(STATUS_DIE_AT_EDGE, TRUE);
 llSetDamage(0);
 llSetBuoyancy(1.0);// Make bullet float and not fall
 llCollisionSound("", 1.0);// Disable collision sounds

 if (delay >0)
 {
 llSetTimerEvent(delay);
 }
 }

 collision_start(integer total_number)
 {

Scripting Recipes for Second Life314

 if (llDetectedType(0) & AGENT)
 {
 llRezObject("Cage", llDetectedPos(0), ZERO_VECTOR,
ZERO_ROTATION, 0);
 }
 }

 timer()
 {
 llDie();
 }

}

 The cage bullet detects a collision using the collision_start event handler.

 collision_start(integer total_number)
{
 if (llDetectedType(0) & AGENT)
 {
 llRezObject("Cage", llDetectedPos(0), ZERO_VECTOR,
 ZERO_ROTATION, 0);
 }
}

 The cage object, which is in the bullet's object inventory, is rezzed over the avatar.

 Summary
 Weapons are one of the more video game like elements of Second Life. Avatars have a

health number which is slowly decreased as the avatar takes more damage. This is similar in
concept to a video game. This chapter showed how to create a gun and several bullet types.

 The gun primarily fi res a bullet in a specifi c direction. The nature of damage infl icted
is completely determined by the bullet. This chapter provided six bullet types. The blank
causes no damage. The 20% bullet infl icts 20% damage. The kill bullet kills instantly. The
cage bullet puts a cage around an avatar. The push bullet pushes the avatar high into the air.
The explosion bullet causes a small explosion.

 Wearable items are not just limited to clothes. Often wearable objects contain scripts that
provide a wide array of tasks. The next chapter will discuss wearable scripted objects.

315Chapter 10: Weapons

Scripting Recipes for Second Life316

317Chapter 11: Wearable Objects

 CHAPTER 11: WEARABLE OBJECTS

 • Creating a Parachute
 • Understanding Heads Up Display (HUD)
 • Flying with a Jet Pack
 • Creating an Anti Push Bracelet

 For many people, wearable objects are one of the biggest elements of the Second Life ex-
perience. There is a wide array of items for sale that attach to avatars. This includes clothing,
jewelry, shoes, hair, and many other items. Considerable money in the Second Life world is
spent on avatar attachments, or wearable objects.

 Usually these wearable objects do not contain scripts. However, some very interesting
wearable objects can be created when scripts are used. This chapter explains how wearable
objects are constructed.

 Recipe 11.1: Parachute
 Parachuting is another example of a real world activity that has found its way into Second

Life. This is in spite of the fact that parachutes are completely unneeded in Second Life. In
Second Life, avatars can fl y. Even when they do fall, they can hit the ground as hard as they
like and suffer no damage. After a particularly bad fall, an avatar just gets up and dusts him-
self off.

 However, parachuting is still popular in Second Life. A parachute is worn on the back of
an avatar. Figure 11.1 shows an avatar wearing a parachute.

Scripting Recipes for Second Life318

 Figure 11.1: Wearing a Parachute

 Figure 11.2 shows an avatar parachuting.

319Chapter 11: Wearable Objects

 Figure 11.2: Parachuting in Second Life

 The parachute in this recipe is fairly easy for the avatar to operate. Simply get high in
the air. There are many ways to do that. Then start falling. Once the avatar starts falling the
parachute begins operating. Once the parachute detects that it is within 150 meters of the
ground it will deploy. The parachute script can be seen in Listing 11.1.

 Listing 11.1: Parachute (Parachute.lsl)

 displayChute(float alpha)
{
 llSetLinkPrimitiveParams(2,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(3,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(4,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(5,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(6,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
}

Scripting Recipes for Second Life320

integer calculateGroundDistance()
{
 vector pos = llGetPos();
 float ground = llGround(pos);
 float distance = llRound(pos.z-ground);
 return (integer)distance;
}

displayGroundDistance()
{
 llSetText("Distance to Ground: " +
 (string)calculateGroundDistance(),<0,1,0>,1);
}

default
{
 attach(key id)
 {
 if(id)
 {
 state attached;
 }
 }
}

state attached
{
 state_entry()
 {
 displayChute(0);
 llSetTimerEvent(1);
 llRequestPermissions(llGetOwner(),
 PERMISSION_TRIGGER_ANIMATION);
 llPreloadSound("parachute");

 }

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;
 }

321Chapter 11: Wearable Objects

 }

 timer()
 {
 if((llGetAgentInfo(llGetOwner()) & AGENT_IN_AIR) &&
 !(llGetAgentInfo(llGetOwner()) & AGENT_FLYING))
 {
 state falling;
 }
 displayGroundDistance();
 }
}

state falling
{
 state_entry()
 {
 llSetTimerEvent(1);
 }

 timer()
 {
 integer dist = calculateGroundDistance();

 if((dist<150) && (dist>20))
 state deployed;
 displayGroundDistance();
 }

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;
 }
 }
}

state deployed
{
 state_entry()
 {
 llTriggerSound("parachute",1);
 displayChute(1);
 llSetTimerEvent(0.1);
 llStopAnimation("falldown");

Scripting Recipes for Second Life322

 llStartAnimation("hover");
 }

 timer()
 {
 // on the ground
 if (!(llGetAgentInfo(llGetOwner()) & AGENT_IN_AIR) &&
 !(llGetAgentInfo(llGetOwner()) & AGENT_FLYING))
 {
 llStopAnimation("hover");
 state attached;
 }

 // started flying
 if(llGetAgentInfo(llGetOwner()) & AGENT_FLYING)
 {
 llStopAnimation("hover");
 state attached;
 }

 vector v = llGetVel();
 if(v.z < -7)
 {
 llPushObject(llGetOwner(), <0,0,7>,
 ZERO_VECTOR, FALSE);
 }

 displayGroundDistance();
 }

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 llStopAnimation("hover");
 state default;
 }
 }
}

 The parachute script begins by defi ning some useful functions that it will use for its
operation. The displayChute function is used to either display or hide the chute.
This is done by passing it an alpha value. This alpha value will be applied to all of the
components of the chute, but not the backpack. An alpha is basically a transparency. A
value of zero is invisible and a value of one is solid. The display chute function uses the
 llSetLinkPrimitiveParms function to set each of the components to the speci-
fi ed alpha.

323Chapter 11: Wearable Objects

 displayChute(float alpha)
{
 llSetLinkPrimitiveParams(2,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(3,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(4,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(5,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(6,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
}

 It is easy to determine the altitude that an avatar is at. Figure 11.3 shows an avatar stand-
ing on the beach, notice the altitude.

 Figure 11.3: Avatar on the Ground at Low Altitude

Scripting Recipes for Second Life324

 The altitude is the third number on the same line as the menu bar. This is the z-coordi-
nate, or altitude. Because the avatar is standing on the beach it is almost zero. Zero means
that the avatar is near sea level, not that they are on the ground. Figure 11.4 shows the avatar
standing on the ground again.

 Figure 11.4: Avatar on the Ground at High Altitude

 However, this time the z-coordinate is much hither. The avatar is much further inland and
on higher ground. The parachute wants to deploy at around 150 meters above the ground.
This must be calculated, the z-coordinate alone will not show the height above the ground.
The calculateGroundDistance function is used to calculate how far above the
ground the avatar is.

 integer calculateGroundDistance()
{

 First, obtain the current position of the avatar. Then query Second Life to determine the
height of the ground at that point.

 vector pos = llGetPos();
 float ground = llGround(pos);

325Chapter 11: Wearable Objects

 The distance above the ground is the difference between the z-coordinate and the ground
height.

 float distance = llRound(pos.z-ground);
 return (integer)distance;
}

 The parachute constantly displays the current distance from the ground. This display is
updated by the displayGroundDistance function.

 displayGroundDistance()
{
 llSetText("Distance to Ground: " +
 (string)calculateGroundDistance(),<0,1,0>,1);
}

 The default state of the parachute does nothing more than wait for the parachute to
be attached. Once the parachute is attached, the parachute moves on to the attached
state.

 default
{
 attach(key id)
 {
 if(id)
 {
 state attached;
 }
 }
}

 The attached state begins by hiding the chute, in case it was not hidden already.

 state attached
{
 state_entry()
 {
 displayChute(0);

 The parachute sets one second timer events. These control when the chute deploys.
The parachute deploy sound is preloaded.

 llSetTimerEvent(1);
 llRequestPermissions(llGetOwner(),
 PERMISSION_TRIGGER_ANIMATION);
 llPreloadSound("parachute");

 }

 If the parachute is detached, return to the default state.

Scripting Recipes for Second Life326

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;
 }
 }

 The timer event handler checks to see whether the avatar starts to fall. This check is
made by calling llGetAgentInfo . If the agent is in the air, but they are not fl ying, then
they are falling. The following lines check this.

 timer()
 {
 if((llGetAgentInfo(llGetOwner()) & AGENT_IN_AIR) &&
 !(llGetAgentInfo(llGetOwner()) & AGENT_FLYING))
 {

 If the agent is falling, enter the falling state.

 state falling;
 }

 Update the ground distance display as part of the timer event.

 displayGroundDistance();
 }
}

 The falling state waits until it is time to deploy the parachute. It is necessary to
have a falling state so that the parachute does not deploy during regular fl ight.

 state falling
{

 As soon as the falling state begins, set a timer event for one second.

 state_entry()
 {
 llSetTimerEvent(1);
 }

 The timer event will be called each second.

 timer()
 {

 During the timer , calculate the ground distance.

 integer dist = calculateGroundDistance();

327Chapter 11: Wearable Objects

 If the distance is between 20 and 150 meters, deploy the chute. If the avatar is below 20
meters, there is no longer time to deploy the chute.

 if((dist<150) && (dist>20))
 state deployed;
 displayGroundDistance();
 }

 If the avatar detaches the parachute then return to the default state.

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;
 }
 }
}

 The deployed state occurs while the avatar is falling to the ground with the chute
on.

 state deployed
{
 state_entry()
 {

 First, the parachute sound is played and the chute displayed. A timer is setup to occur
ten times a second. The hover animation is begun.

 llTriggerSound("parachute",1);
 displayChute(1);
 llSetTimerEvent(0.1);
 llStopAnimation("falldown");
 llStartAnimation("hover");
 }

 The avatar is now falling. The fall needs to be slowed to make the parachute seem realis-
tic. The timer, which is called ten times per second, applies a force to slow the fall.

 timer()
 {

 If the avatar has touched down on the ground, return to the attached state. This
hides the chute.

 if (!(llGetAgentInfo(llGetOwner()) & AGENT_IN_AIR) &&
 !(llGetAgentInfo(llGetOwner()) & AGENT_FLYING))
 {
 llStopAnimation("hover");
 state attached;

Scripting Recipes for Second Life328

 }

 The avatar may also start fl ying in the middle of a drop. If this is the case, return to the
 attached state. This hides the chute.

 // started flying
 if(llGetAgentInfo(llGetOwner()) & AGENT_FLYING)
 {
 llStopAnimation("hover");
 state attached;
 }

 Check to see how fast the avatar is falling. Do not allow the avatar to fall faster than -7.

 vector v = llGetVel();
 if(v.z < -7)
 {

 If the avatar is falling too fast, apply upward force to slow the avatar.

 llPushObject(llGetOwner(), <0,0,7>, ZERO_VECTOR,
FALSE);
 }
 displayGroundDistance();
 }

 As a part of the timer event, display the ground distance.

 Recipe 11.2: HUD Parachute
 Heads Up Displays or HUDs, are a common feature of many Second Life objects. Per-

haps more control over the object is needed than is available with the motion keys. A HUD
allows a control panel to be attached to the screen. The user can click on the control panel to
determine what the object does. A HUD display is shown in Figure 11.5.

329Chapter 11: Wearable Objects

 Figure 11.5: A HUD Display

 This recipe presents a manual parachute. Rather than deploying automatically, this rec-
ipe uses a HUD to allow that avatar to specify when to deploy and when to hide. The para-
chute script is shown in Listing 11.2.

 Listing 11.2: HUD Parachute (ParachuteHUD.lsl)

 integer CHANNEL = 155;

displayChute(float alpha)
{
 llSetLinkPrimitiveParams(2,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(3,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(4,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(5,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
 llSetLinkPrimitiveParams(6,[PRIM_COLOR, ALL_SIDES,<1,1,1>,
 alpha]);
}

Scripting Recipes for Second Life330

integer calculateGroundDistance()
{
 vector pos = llGetPos();
 float ground = llGround(pos);
 float distance = llRound(pos.z-ground);
 return (integer)distance;
}

displayGroundDistance()
{
 llSetText("Distance to Ground: " +
 (string)calculateGroundDistance(),<0,1,0>,1);
}

default
{
 attach(key id)
 {
 if(id)
 {
 state attached;
 }
 }
}

state attached
{
 state_entry()
 {
 displayChute(0);
 llSetTimerEvent(1);
 llRequestPermissions(llGetOwner(),
 PERMISSION_TRIGGER_ANIMATION);
 llPreloadSound("parachute");
 llListen(CHANNEL, "", NULL_KEY, "");

 }

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;

331Chapter 11: Wearable Objects

 }
 }

 listen(integer channel, string name, key id, string message)
 {
 llSay(0,message);
 if(message=="open")
 state deployed;
 }

 timer()
 {
 displayGroundDistance();
 }
}

state falling
{
 state_entry()
 {
 llSetTimerEvent(1);
 llListen(CHANNEL, "", NULL_KEY, "");
 }

 timer()
 {
 integer dist = calculateGroundDistance();
 displayGroundDistance();
 }

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;
 }
 }
}

state deployed
{
 state_entry()
 {
 llTriggerSound("parachute",1);

Scripting Recipes for Second Life332

 displayChute(1);
 llSetTimerEvent(0.1);
 llStopAnimation("falldown");
 llStartAnimation("hover");
 llListen(CHANNEL, "", NULL_KEY, "");
 }

 listen(integer channel, string name, key id, string message)
 {
 if(message=="close")
 state attached;
 }

 timer()
 {
 vector v = llGetVel();
 if(v.z < -7)
 {
 llPushObject(llGetOwner(), <0,0,7>,
 ZERO_VECTOR, FALSE);
 }

 displayGroundDistance();
 }

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 llStopAnimation("hover");
 state default;
 }
 }
}

 Much of the HUD parachute is the same as Recipe 11.1. Only the parts of Recipe 11.2
that are different from 11.1 will be explained. For more information on how the parachute
actually deploys, refer to Recipe 11.1.

 The HUD parachute needs to listen on a channel for instructions from the HUD. Chan-
nel 155 was selected.

 integer CHANNEL = 155;

333Chapter 11: Wearable Objects

 The listen event handler listens on channel 155. Once an open command is received
from the HUD, the chute is deployed.

 listen(integer channel, string name, key id, string message)
{
 if(message=="open")
 state deployed;
}

 There is a similar listen event handler in the deployed state. This event handler
waits for a close message. When the close message is received, the chute closes and returns
to the attached state.

 listen(integer channel, string name, key id, string message)
{
 if(message=="close")
 state attached;
}

 The HUD for the parachute is very simple. A single block forms the control panel back-
ing for the HUD. Additionally, two blocks form the “Open” and “Close” buttons. The script
for close is shown in Listing 11.3.

 Listing 11.3: Close Parachute (ParaClose.lsl)

 integer CHANNEL = 155;

default
{

 touch_start(integer total_number)
 {
 llSay(CHANNEL,"close");
 }
}

 The parachute also includes an open button. The open button's script is shown in Listing
11.4.

 Listing 11.4: Open Parachute (ParaOpen.lsl)

 integer CHANNEL = 155;

default
{

 touch_start(integer total_number)
 {
 llSay(CHANNEL,"open");
 }

Scripting Recipes for Second Life334

}

 Both buttons use llSay to either send the “open” or “close” commands.

 Recipe 11.3: Jet Pack
 Jet packs can be very helpful in Second Life. While an avatar does not need a jet pack

to fl y, a jet pack allows an avatar to fl y much higher than is normally allowed. Without assis-
tance, an avatar cannot fl y higher than 200 meters.

 Using the jet pack is easy, simply attach it to the avatar. Once attached, fl y normally.
The jet pack will take over and allow the avatar to fl y very high. Figure 11.6 shows an avatar
wearing a jet pack.

 Figure 11.6: A Jet Pack

 Listing 11.5 shows the jet pack script.

 Listing 11.5: Jet Pack (JetPack.lsl)

 default
{

335Chapter 11: Wearable Objects

 state_entry()
 {
 llReleaseControls();
 }

 attach(key id)
 {
 if(id)
 {
 state attached;
 }
 }
}

state attached
{
 state_entry()
 {
 llSetTimerEvent(1);
 }

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;
 }
 }

 timer()
 {
 if (llGetAgentInfo(llGetOwner()) & AGENT_FLYING)
 {
 state flying;
 }
 }
}

state flying
{
 state_entry()
 {
 llRequestPermissions(llGetOwner(),
 PERMISSION_TAKE_CONTROLS);
 llSetTimerEvent(1);
 }

Scripting Recipes for Second Life336

 run_time_permissions(integer perm)
 {
 if (perm & PERMISSION_TAKE_CONTROLS) {
 llTakeControls(CONTROL_UP|CONTROL_FWD|
 CONTROL_BACK, TRUE, FALSE);
 }
 }

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;
 }
 }

 timer()
 {
 vector pos = llGetPos();
 llSetText("Altitude: " + (string)pos.z, <0,1,0>, 1);

 if (!(llGetAgentInfo(llGetOwner()) & AGENT_FLYING))
 {
 llReleaseControls();
 state attached;
 }
 }

 control(key id, integer held, integer change)
 {
 if (held & CONTROL_UP)
 {
 llPushObject(llGetOwner(), <0,0,2>,
 ZERO_VECTOR, FALSE);
 }
 else if (held & CONTROL_FWD)
 {
 rotation rot = llGetRot();
 vector vel = llRot2Fwd(rot);

 if(llGetAgentInfo(llGetOwner()) & AGENT_FLYING)
 vel*=4;
 else
 vel/=2;

337Chapter 11: Wearable Objects

 llPushObject(llGetOwner(), vel, ZERO_VECTOR, FALSE);
 }
 }
}

 The jet pack starts in a default state. This state serves only to wait to be attached.

 default
{
 state_entry()
 {

 The script releases controls when the default state is either entered or re-entered.

 llReleaseControls();
 }

 attach(key id)
 {
 if(id)
 {

 Once the jet pack has been attached, enter the attached state.

 state attached;
 }
 }
}

 The primary purpose of the attached state is to wait for the avatar to start to fl y.
Once the avatar is in fl ight, the jet pack kicks in.

 state attached
{
 state_entry()
 {

 Set a one second timer to begin waiting for the avatar to take fl ight.

 llSetTimerEvent(1);
 }

 If the jet pack is detached, return to the default state.

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;
 }
 }

Scripting Recipes for Second Life338

 Once per second, check to see whether the avatar is in fl ight. Once the avatar is in fl ight
begin the flying state.

 timer()
 {
 if (llGetAgentInfo(llGetOwner()) & AGENT_FLYING)
 {
 state flying;
 }
 }
}

 If the avatar is in a flying state, take the controls. This is how the jet pack works. The
controls are taken over and forces are applied when the avatar hits each of the controls.

 state flying
{
 state_entry()
 {

 First, request to take the controls. Then set a time for one second intervals.

 llRequestPermissions(llGetOwner(),
 PERMISSION_TAKE_CONTROLS);
 llSetTimerEvent(1);
 }

 If permission is granted, take control of the up, forward and backward controls.

 run_time_permissions(integer perm)
 {
 if (perm & PERMISSION_TAKE_CONTROLS) {
 llTakeControls(CONTROL_UP|CONTROL_FWD|
 CONTROL_BACK, TRUE, FALSE);
 }
 }

 If the jet pack is detached, while in the flying state, return to the default state.

 attach(key id)
 {
 if(id==NULL_KEY)
 {
 state default;
 }
 }

 The timer event handler is called every second.

 timer()
 {

339Chapter 11: Wearable Objects

 First, display the altitude, which is the z-coordinate.

 vector pos = llGetPos();
 llSetText("Altitude: " + (string)pos.z, <0,1,0>, 1);

 Check to see whether the agent is not fl ying.

 if (!(llGetAgentInfo(llGetOwner()) & AGENT_FLYING))
 {

 If the agent is no longer fl ying, release the controls and enter the attached state.

 llReleaseControls();
 state attached;
 }
 }

 The control event handler is called whenever the avatar pushes one of the control
keys that the script has taken control of.

 control(key id, integer held, integer change)
 {

 If the upward control is pressed, apply an upward push to the avatar.

 if (held & CONTROL_UP)
 {
 llPushObject(llGetOwner(), <0,0,2>, ZERO_VECTOR,
 FALSE);
 }

 If the user presses forward, apply a forward push.

 else if (held & CONTROL_FWD)
 {

 Determine which direction the avatar is facing and obtain a single unit velocity to propel
the avatar in that direction.

 rotation rot = llGetRot();
 vector vel = llRot2Fwd(rot);

 Next determine whether the avatar is fl ying. If they are fl ying, multiply vel by 4, oth-
erwise divide vel by 2.

 if(llGetAgentInfo(llGetOwner()) & AGENT_FLYING)
 vel*=4;
 else
 vel/=2;

 llPushObject(llGetOwner(), vel, ZERO_VECTOR, FALSE);
 }

Scripting Recipes for Second Life340

 }
}

 Finally, the object is pushed in the direction that was determined as forward.

 Recipe 11.4: Anti-Push Bracelet
 Second Life has developed its own culture and rules. The notion of what is rude in

Second Life often mirrors real life. One action that is considered very rude in Second Life
is pushing. Avatars will often push each other simply to “grief” other players. Griefi ng is
common term heard in the online game world. Wikipedia defi nes a griefer as: “A griefer is
a slang term used to describe a player in an online video game who plays the game simply to
cause grief to other players through harassment.”

 Pushing is one of the most common forms of griefi ng in Second Life. However, it is easy
enough to stop pushing. Anti-push bracelets are somewhat common in Second Life. An anti-
push bracelet is not hard to create. Listing 11.6 contains the script for an anti-push script.

 Listing 11.6: Anti Push Script (NoPush.lsl)

 integer locked;
float LOCKTIME = 1.0;

default
{
 state_entry()
 {
 }

 on_rez(integer start_param)
 {
 llRequestPermissions(llGetOwner(),
 PERMISSION_TAKE_CONTROLS);
 locked = FALSE;
 }

 run_time_permissions(integer perm)
 {
 if(perm & (PERMISSION_TAKE_CONTROLS))
 {
 llTakeControls(CONTROL_FWD|
 CONTROL_BACK|
 CONTROL_RIGHT|
 CONTROL_LEFT|
 CONTROL_ROT_RIGHT|

341Chapter 11: Wearable Objects

 CONTROL_ROT_LEFT|
 CONTROL_UP|
 CONTROL_DOWN,
 TRUE, TRUE);

 llSetTimerEvent(1);
 }
 }

 control(key id, integer level, integer edge)
 {
 if (locked)
 {
 llMoveToTarget(llGetPos(), 0);
 locked = FALSE;
 }
 llResetTime();
 }

 timer()
 {
 if ((!locked) && (llGetTime() > LOCKTIME))
 {
 llMoveToTarget(llGetPos(), 0.2);
 locked = TRUE;
 }
 }
}

 The anti-push script begins by declaring two variables.

 integer locked;
float LOCKTIME = 1.0;

 The locked variable determines whether the avatar is locked in its current position,
and cannot be pushed. The LOCKTIME specifi es the number of seconds the avatar must
stand still before it will lock and be unpushable.

 on_rez(integer start_param)
{
 llRequestPermissions(llGetOwner(),
 PERMISSION_TAKE_CONTROLS);
 locked = FALSE;
}

 The runtime permissions attempts to take control of all movement controls.

 run_time_permissions(integer perm)
{

Scripting Recipes for Second Life342

 if(perm & (PERMISSION_TAKE_CONTROLS))
 {
 llTakeControls(CONTROL_FWD|
 CONTROL_BACK|
 CONTROL_RIGHT|
 CONTROL_LEFT|
 CONTROL_ROT_RIGHT|
 CONTROL_ROT_LEFT|
 CONTROL_UP|
 CONTROL_DOWN,
 TRUE, TRUE);

 Cause a timer event to occur every second. The timer will move the avatar back to
its locked position every second.

 llSetTimerEvent(1);
 }
}

 When the avatar moves, unlock the position. The locking is not to interfere with regular
movement.

 control(key id, integer level, integer edge)
{
 if (locked)
 {

 Unlock the target. The value of zero removes the damping set up by the timer event
handler.

 llMoveToTarget(llGetPos(), 0);
 locked = FALSE;
 }
 llResetTime();
}

 If the avatar has been in the same location for more than the LOCKTIME , lock the ava-
tar in place. The llMoveToTarget function call places a damper on the avatar's move-
ment. This locks the avatar in place.

 timer()
{
 if ((!locked) && (llGetTime() > LOCKTIME))
 {
 llMoveToTarget(llGetPos(), 0.2);
 locked = TRUE;
 }
}

 With the damping effect created by llMoveToTarget , no motion can occur.

343Chapter 11: Wearable Objects

 Summary
 This chapter explained how to create scripts for items that an avatar wears. Recipes were

provided for parachutes, HUDs, jet packs and no-push bracelets. Wearable items are very
popular in Second Life. Scripts only enhance their appeal.

 This is the fi nal chapter of this book. There will likely be future editions as Second
Life evolves. We are always looking for suggestions for additional examples for future
books. If you have any suggestions or comments on this book feel free to contact us at
support@heatonresearch.com.

 Heaton Research occasionally schedules classes in the Second Life world. These are
almost always free of charge. To keep up to date on our Second Life events, consider joining
the Second Life Group:

 Heaton Research Courses

 Simply search for it under groups! We hope you fi nd these examples useful. Happy
scripting!

 Stop by and visit Heaton Research in Second Life. We own the island of Encogia, which
can be found at the following URL:

 http://slurl.com/secondlife/Encogia/197/191/23

 Happy scripting!

Scripting Recipes for Second Life344

345Appendix A: Downloading Examples

 APPENDIX A: DOWNLOADING EXAMPLES

 This book contains many source code examples. You do not need to retype any of these
examples; they all can be downloaded from the Internet.

 Simply go to the site:

 http://www.heatonresearch.com/download/

 This site will give you more information on how to download the example programs.

 All examples in this book can also be obtained as actual Second Life objects. This is done
inside of Second Life itself. The examples can be found at the Heaton Research HQ. Stop by
and visit Heaton Research in Second Life. We own the island of Encogia, which can be found
at the following URL:

 http://slurl.com/secondlife/Encogia/197/191/23

Scripting Recipes for Second Life346

347Appendix B: Built In Animations

 APPENDIX B: BUILT IN ANIMATIONS

 Second Life includes many built in animations that can be used with the
 llStartAnimation function. These animations are listed here.

 aim_l_bow
aim_r_bazooka
aim_r_handgun
aim_r_rifle
angry_fingerwag
angry_tantrum
away
backflip
blowkiss
bow
brush
busy
clap
courtbow
crouch
crouchwalk
dance1
dance2
dance3
dance4
dance5
dance6
dance7
dance8
dead
drink
express_afraid
express_afraid_emote
express_anger
express_anger_emote
express_bored
express_bored_emote
express_cry
express_cry_emote
express_disdain
express_embarrassed
express_embarrassed_emote

Scripting Recipes for Second Life348

express_frown
express_kiss
express_laugh
express_laugh_emote
express_open_mouth
express_repulsed
express_repulsed_emote
express_sad
express_sad_emote
express_shrug
express_shrug_emote
express_smile
express_surprise
express_surprise_emote
express_tongue_out
express_toothsmile
express_wink
express_wink_emote
express_worry
express_worry_emote
falldown
female_walk
fist_pump
fly
flyslow
hello
hold_l_bow
hold_r_bazooka
hold_r_handgun
hold_r_rifle
hold_throw_r
hover
hover_down
hover_up
impatient
jump
jumpforjoy
kick_roundhouse_r
kissmybutt
land
laugh_short
motorcycle_sit
musclebeach
no_head
no_unhappy
nyanya

349Appendix B: Built In Animations

peace
point_me
point_you
prejump
punch_l
punch_onetwo
punch_r
rps_countdown
rps_paper
rps_rock
rps_scissors
run
salute
shoot_l_bow
shout
sit
sit_female
sit_generic
sit_ground
sit_to_stand
sleep
smoke_idle
smoke_inhale
smoke_throw_down
snapshot
soft_land
stand
stand_1
stand_2
stand_3
stand_4
standup
stretch
stride
surf
sword_strike_r
talk
throw_r
tryon_shirt
turn_180
turnback_180
turnleft
turnright
type
walk
whisper

Scripting Recipes for Second Life350

whistle
wink_hollywood
yes_happy
yes_head
yoga_float

351Appendix C: Event Functions

 APPENDIX C: EVENT FUNCTIONS

 Second Life includes many events that a script can register to process. These events are
listed here.

 at_rot_target(integer tnum, rotation targetrot, rotation ourrot)

at_target(integer tnum, vector targetpos, vector ourpos)

attach(key id)

changed(integer change)

collision(integer num_detected)

collision_end(integer num_detected)

collision_start(integer num_detected)

control(key id, integer level, integer edge)

dataserver(key queryid, string data)

email(string time, string address, string subj, string
 message, integer num_left)

http_response(key request_id, integer status, list
 metadata, string body)

land_collision(vector pos)

land_collision_end(vector pos)

land_collision_start(vector pos)

link_message(integer sender_num, integer num, string str,
 key id)

listen(integer channel, string name, key id,
 string message)

money(key id, integer amount)

Scripting Recipes for Second Life352

moving_end()

moving_start()

no_sensor()

not_at_rot_target()

not_at_target()

object_rez(key id)

on_rez(integer start_param)

remote_data(integer event_type, key channel, key
 message_id, string sender, integer idata,
 string sdata)

run_time_permissions(integer perm)

sensor(integer num_detected)

state_entry()

state_exit()

timer()

touch(integer num_detected)

touch_end(integer num_detected)

touch_start(integer num_detected)

353Appendix C: Event Functions

Scripting Recipes for Second Life354

	Introduction
	Chapter 1: Introduction to LSL
	Chapter 2: String Handling
	Chapter 3: Components for Buildings
	Chapter 4: Particle Effects
	Chapter 5: Vehicles
	Chapter 6: Scanners
	Chapter 7: Miscellaneous Recipes
	Chapter 8: Commerce
	Chapter 9: Rental Property
	Chapter 10: Weapons
	Chapter 11: Wearable Objects
	Appendix A: Downloading Examples
	Appendix B: Built In Animations
	Appendix C: Event Functions

	Introduction
	Chapter 1: Introduction to LSL
	State Machines
	Handling Events
	Communicating
	Modifying Objects
	Understanding Dialogs
	Implementing Basic Security
	Summary

	Chapter 2: String Handling
	Recipe 2.1: String Comparison
	Recipe 2.2: String Sets
	Recipe 2.3: String Parsing
	Summary

	Chapter 3: Components for Buildings
	Recipe 3.1: Splashing Water
	Recipe 3.2: Open Door
	Recipe 3.3: Owner Locked Door
	Recipe 3.4: Multi-User Lockable Door
	Variables Needed for the Door
	Recipe 3.5: Teleport Pad
	Recipe 3.6: Elevator
	Summary

	Chapter 4: Particle Effects
	Recipe 4.1: Basic Particle Emitter
	Recipe 4.2: Chimney
	Recipe 4.3: Leaf Generator
	Recipe 4.4: Jewelry
	Recipe 4.5: Explosion
	Summary

	Chapter 5: Vehicles
	Recipe 5.1: Car
	Recipe 5.2: Boat
	Recipe 5.3: Helicopter
	Recipe 5.4: Super Car
	Summary

	Chapter 6: Scanners
	Recipe 6.1: Avatar Radar
	Recipe 6.2: Notecard Giver
	Recipe 6.3: Automatic Door
	Recipe 6.4: Traffic Scanner
	Summary

	Chapter 7: Miscellaneous Recipes
	Recipe 7.1: Avatar Cannon
	Recipe 7.2: Analog Clock
	Recipe 7.3: Weather Station
	Recipe 7.4: Slide Show
	Recipe 7.5: Notecard Controlled Slide Show
	Recipe 7.6: Announcer Script
	Recipe 7.7: Online Indicator
	Summary

	Chapter 8: Commerce
	Recipe 8.1: Camping Pad
	Recipe 8.2: Simple Tip Jar
	Recipe 8.3: Club Tip Jar
	Recipe 8.4: Vendor Script
	Summary

	Chapter 9: Rental Property
	Recipe 9.1: Rental Script
	Other Rental Considerations
	Summary

	Chapter 10: Weapons
	Recipe 10.1: Basic Gun
	Recipe 10.2: Multi Bullet Gun
	Bullets for the Multi Bullet Gun
	Summary

	Chapter 11: Wearable Objects
	Recipe 11.1: Parachute
	Recipe 11.2: HUD Parachute
	Recipe 11.3: Jet Pack
	Recipe 11.4: Anti-Push Bracelet
	Summary

	Appendix A: Downloading Examples
	Appendix B: Built In Animations
	Appendix C: Event Functions
	Figure 1.1: Second Life Dialogs
	Figure 1.2: Setting the Group of an Object
	Figure 3.1: Beach Front Land in Second Life
	Figure 3.2: Swimming Pool
	Figure 3.3: Door with Center
	Figure 3.4: An Elevator
	Figure 4.1: Basic Particle Emitter
	Figure 4.2: Chimney
	Figure 4.3: Fall Leafs
	Figure 4.4: Jewelry
	Figure 4.5: Explosion
	Figure 5.1: Second Life Vehicles
	Figure 5.2: A Car in Second Life
	Figure 5.3: Setting the Material Type
	Figure 5.4: A Car with Two Passengers
	Figure 5.5: A Boat in Second Life
	Figure 5.6: A Boat with Wake
	Figure 5.7: A Helicopter
	Figure 6.1: Avatar Radar
	Figure 6.2: Notecard Giver
	Figure 6.3: Automatic Door
	Figure 6.4: Traffic Scanner
	Figure 7.1: Avatar Cannon
	Figure 7.2: Analog Clock
	Figure 7.3: Weather Station
	Figure 7.4: Slide Show
	Figure 7.5: Online Indicator
	Figure 8.1: Traffic
	Figure 8.2: A Camping Pad
	Figure 8.3: A Tip Jar
	Figure 8.4: A Pay Dialog
	Figure 8.5: A Second Life Store
	Figure 8.6: Using a Vendor Script
	Figure 9.1: An Apartment Building
	Figure 9.2: The Primary Door
	Figure 9.3: The Secondary Door
	Figure 9.4: Setting a Landing Point
	Figure 10.1: An Area that Allows Damage
	Figure 10.2: Mouselook Mode
	Figure 10.3: Holding a Gun
	Figure 10.4: Basic Bullet
	Figure 10.5: Load the Gun
	Figure 10.6: An Avatar in a Cage
	Figure 11.1: Wearing a Parachute
	Figure 11.2: Parachuting in Second Life
	Figure 11.3: Avatar on the Ground at Low Altitude
	Figure 11.4: Avatar on the Ground at High Altitude
	Figure 11.5: A HUD Display
	Figure 11.6: A Jet Pack
	Listing 2.1: String Comparison (StringCompare.lsl)
	Listing 2.2: String Comparison (StringCompare.lsl)
	Listing 2.3: String Parsing (StringParse.lsl)
	Listing 3.1: Splashing Water (Splash.lsl)
	Listing 3.2: Open Door (OpenDoor.lsl)
	Listing 3.3: Owner Locked Door (OwnerLockedDoor.lsl)
	Listing 3.4: Multi-User Lockable Door (SmartDoor.lsl)
	Listing 3.5: Teleport Pad (Teleport.lsl)
	Listing 3.6: Elevator Car (Elevator.lsl)
	Listing 3.7: Call Elevator (Call.lsl)
	Listing 4.1: Basic Particle Emitter (BasicParticle.lsl)
	Listing 4.2: Chimney (Smoke.lsl)
	Listing 4.3: Fall Leafs (Leafs.lsl)
	Listing 4.4: Jewelry (Bling.lsl)
	Listing 4.5: Explosion (Explode.lsl)
	Listing 5.1: Main Car Script for the Root Prim (Car.lsl)
	Listing 5.2: Car Passenger Seat (CarSeat.lsl)
	Listing 5.3: Can't Sit Here (DontSitHere.lsl)
	Listing 5.4: Car Wheel (WheelScript.lsl)
	Listing 5.5: Rotate the Hubcaps (WheelScript.lsl)
	Listing 5.6: The Boat Script (Boat.lsl)
	Listing 5.7: Boat Wake (BoatWake.lsl)
	Listing 5.8: Helicopter Script (Helicopter.lsl)
	Listing 5.9: Helicopter Rotors (Blade.lsl)
	Listing 5.10: The Super Car (SuperCar.lsl)
	Listing 6.1: Avatar Radar (Radar.lsl)
	Listing 6.2: Notecard Giver (NotecardGiver.lsl)
	Listing 6.3: Automatic Door (AutoDoor.lsl)
	Listing 6.4: Traffic Scanner (TrafficScanner.lsl)
	Listing 7.1: Avatar Cannon (Cannon.lsl)
	Listing 7.2: Avatar Cannon (AnalogClock.lsl)
	Listing 7.3: Weather Station (Weather.lsl)
	Listing 7.4: Slide Show (SlideShow.lsl)
	Listing 7.5: A Notecard Controlled Slide Show (SlideControl.not)
	Listing 7.6: A Notecard Controlled Slide Show (NotecardSlideShow.lsl)
	Listing 7.7: An Announcer Script (Announce.lsl)
	Listing 7.7: Online Indicator (Announce.lsl)
	Listing 8.1: Camping Pad Configuration (CampConfig.not)
	Listing 8.2: Camping Pad Dancing (CampDance.lsl)
	Listing 8.3: Camping Pad Control (Camp.lsl)
	Listing 8.4: Simple Tip Jar (TipJar.lsl)
	Listing 8.5: Club Tip Jar (ClubTipJar.not)
	Listing 8.6: Club Tip Jar (ClubTipJar.lsl)
	Listing 8.7: Vendor Notecard (Vendor.not)
	Listing 8.8: Main Vendor Script (Vendor.not)
	Listing 8.8: The Forward Button (VendorForward.lsl)
	Listing 8.9: The Backward Button (VendorBack.lsl)
	Listing 8.10: The Buy Button (VendorBuy.lsl)
	Listing 9.1: Primary Rental Door (RentalPrimary.lsl)
	Listing 10.1: Basic Gun (BasicGun.lsl)
	Listing 10.2: Basic Bullet (BulletBasic.lsl)
	Listing 10.3: Multi Bullet Gun (MultiGun.lsl)
	Listing 10.4: Blank Bullet (BulletBlank.lsl)
	Listing 10.5: 20% Bullet (Bullet20.lsl)
	Listing 10.6: Kill Bullet (BulletKill.lsl)
	Listing 10.7: Explosion Bullet (BulletExplode.lsl)
	Listing 10.8: Push Bullet (BulletPush.lsl)
	Listing 10.9: Cage Bullet (BulletCage.lsl)
	Listing 11.1: Parachute (Parachute.lsl)
	Listing 11.2: HUD Parachute (ParachuteHUD.lsl)
	Listing 11.3: Close Parachute (ParaClose.lsl)
	Listing 11.4: Open Parachute (ParaOpen.lsl)
	Listing 11.5: Jet Pack (JetPack.lsl)
	Listing 11.6: Anti Push Script (NoPush.lsl)
	Table 1.1: Communication Distances
	Table 4.1: PSYS_PART_FLAGS Flags
	Table 4.2: PSYS_SRC_PATTERN Values
	Table 4.3: Remaining Particle Emitter Name-Value Pairs
	Table 4.4: Parameters for fakeMakeExplosion
	Table 5.1: Vehicle Types
	Table 5.2: Floating Point Vehicle Parameters
	Table 5.3: Vector Vehicle Parameters
	Table 5.4: Rotation Point Vehicle Parameters
	Table 5.4: Vector Vehicle Parameters
	Table 6.1: Scan Types
	Table 10.1: Bullet Types

