DO NOT MAKE ILLEGAL COPIES OF THIS EBOOK

E-Book Name: Introduction to Linden Scripting Language for Second Life
ISBN: 1604390042
E-Book Price: $9.99 (USD)

Purchasing Information: http://www.heatonresearch.com/book

This E-Book is copyrighted material. It is only for the use of the person who purchased it. Unless you obtained
this ebook from Heaton Research, Inc. you have obtained an illegal copy. For more information contact Heaton
Research at:

http://www.heatonresearch.com

Introduction to Linden Scripting
Language for Second Life

Introduction to Linden Scripting
Language for Second Life

by Jeff Heaton

Heaton Research, Inc.
St. Louis

1\Y

Introduction to Linden Scripting Language for Second Life

Introduction to Linden Scripting Language for Second Life
First printing

Publisher: Heaton Research, Inc
Author: Jeff Heaton

Editor: Mark Biss

Cover Art: Carrie Spear

ISBN’s for all Editions:
1-6043900-4-2, Softcover
1-6043900-5-0, Adobe PDF e-book

Copyright © 2007 by Heaton Research Inc., 1734 Clarkson Rd. #107, Chesterfield, MO
63017-4976. World rights reserved. The author(s) created reusable code in this publication
expressly for reuse by readers. Heaton Research, Inc. grants readers permission to reuse
the code found in this publication or downloaded from our website so long as (author(s)) are
attributed in any application containing the reusable code and the source code itself is never
redistributed, posted online by electronic transmission, sold or commercially exploited as a
stand-alone product. Aside from this specific exception concerning reusable code, no part of
this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including, but not limited to photo copy, photograph, magnetic, or other record, without prior
agreement and written permission of the publisher.

Heaton Research and the Heaton Research logo are both registered trademarks of Hea-
ton Research, Inc., in the United States and/or other countries.

TRADEMARKS: Heaton Research has attempted through out this book to distinguish
proprietary trademarks from descriptive terms by following the capitalization style used by
the manufacturer.

The author and publisher have made their best efforts to prepare this book, so the con-
tent is based upon the final release of software whenever possible. Portions of the manuscript
may be based upon pre-release versions suppled by software manufacturer(s). The author
and the publisher make no representation or warranties of any kind with regard to the com-
pleteness or accuracy of the contents herein and accept no liability of any kind including but
not limited to performance, merchantability, fitness for any particular purpose, or any losses
or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America.

10987654321

SOFTWARE LICENSE AGREEMENT: TERMS AND CONDITIONS

The media and/or any online materials accompanying this book that are available now
or in the future contain programs and/or text files (the “Software”) to be used in connection
with the book. Heaton Research, Inc. hereby grants to you a license to use and distribute
software programs that make use of the compiled binary form of this book’s source code. You
may not redistribute the source code contained in this book, without the written permission
of Heaton Research, Inc. Your purchase, acceptance, or use of the Software will constitute
your acceptance of such terms.

The Software compilation is the property of Heaton Research, Inc. unless otherwise indi-
cated and is protected by copyright to Heaton Research, Inc. or other copyright owner(s) as
indicated in the media files (the “Owner(s)”). You are hereby granted a license to use and dis-
tribute the Software for your personal, noncommercial use only. You may not reproduce, sell,
distribute, publish, circulate, or commercially exploit the Software, or any portion thereof,
without the written consent of Heaton Research, Inc. and the specific copyright owner(s) of
any component software included on this media.

In the event that the Software or components include specific license requirements or
end-user agreements, statements of condition, disclaimers, limitations or warranties (“End-
User License”), those End-User Licenses supersede the terms and conditions herein as to
that particular Software component. Your purchase, acceptance, or use of the Software will
constitute your acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all
export laws and regulations of the United States as such laws and regulations may exist from
time to time.

SOFTWARE SUPPORT

Components of the supplemental Software and any offers associated with them may be
supported by the specific Owner(s) of that material but they are not supported by Heaton Re-
search, Inc.. Information regarding any available support may be obtained from the Owner(s)
using the information provided in the appropriate README files or listed elsewhere on the
media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor
any offer, Heaton Research, Inc. bears no responsibility. This notice concerning support for
the Software is provided for your information only. Heaton Research, Inc. is not the agent or
principal of the Owner(s), and Heaton Research, Inc. is in no way responsible for providing
any support for the Software, nor is it liable or responsible for any support provided, or not
provided, by the Owner(s).

VI

Introduction to Linden Scripting Language for Second Life

WARRANTY

Heaton Research, Inc. warrants the enclosed media to be free of physical defects for a pe-
riod of ninety (90) days after purchase. The Software is not available from Heaton Research,
Inc. in any other form or media than that enclosed herein or posted to www.heatonresearch.
com. If you discover a defect in the media during this warranty period, you may obtain a re-
placement of identical format at no charge by sending the defective media, postage prepaid,
with proof of purchase to:

Heaton Research, Inc.
Customer Support Department
1734 Clarkson Rd #107
Chesterfield, MO 63017-4976

Web: www.heatonresearch.com
E-Mail: support@heatonresearch.com

After the 90-day period, you can obtain replacement media of identical format by send-
ing us the defective disk, proof of purchase, and a check or money order for $10, payable to
Heaton Research, Inc..

DISCLAIMER

Heaton Research, Inc. makes no warranty or representation, either expressed or implied,
with respect to the Software or its contents, quality, performance, merchantability, or fitness
for a particular purpose. In no event will Heaton Research, Inc., its distributors, or dealers
be liable to you or any other party for direct, indirect, special, incidental, consequential, or
other damages arising out of the use of or inability to use the Software or its contents even if
advised of the possibility of such damage. In the event that the Software includes an online
update feature, Heaton Research, Inc. further disclaims any obligation to provide this feature
for any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states. Therefore, the
above exclusion may not apply to you. This warranty provides you with specific legal rights;
there may be other rights that you may have that vary from state to state. The pricing of the
book with the Software by Heaton Research, Inc. reflects the allocation of risk and limitations
on liability contained in this agreement of Terms and Conditions.

SHAREWARE DISTRIBUTION

This Software may contain various programs that are distributed as shareware. Copy-
right laws apply to both shareware and ordinary commercial software, and the copyright
Owner(s) retains all rights. If you try a shareware program and continue using it, you are
expected to register it. Individual programs differ on details of trial periods, registration, and
payment. Please observe the requirements stated in appropriate files.

VII

VIII Introduction to Linden Scripting Language for Second Life

This book is dedicated to
Lolalee Dibou.

Introduction to Linden Scripting Language for Second Life

Acknowledgments

There are several people who I would like to acknowledge. First, I would like to thank the
many people who have given me suggestions and comments on my Second Life scripts.

I would like to thank WordsRU.com for providing editing resources. I would like to thank
Mark Biss for editing the book.

I would like to thank my sister Carrie Spear for layout and formatting suggestions.

XI11 Introduction to Linden Scripting Language for Second Life

XIII

Contents at a Glance

INtrOdUCTION ... ———————— XXXI
Chapter 1: Introduction to Second Life Buildingcccocvrrrerrerrersersessessessenses 35
Chapter 2: Introduction t0 LSLcccccrvnmmimnnemimnesinsssssssssssssssssssssssssssssnnns 51
Chapter 3: Script Control..........ccccvemvmnimnnmniesne s, 63
Chapter 4: State MacChingsccvcrvinimnnninne s 75
Chapter 5: String Handlingcccocverrrrrsssessessersessessessessessessessessessassnsssssnsses 83
Chapter 6: CoOmmUNICAtioN..........ccvcrvreriemssnminnses s 99
Chapter 7: EVeNtS........cccccvirimnerinisssnsssnssnsns 113
Chapter 8: LiStS......cccuerimrierinnerisnissnssssssnssssssnsssnssnnns 131
Chapter 9: Non-Physical Movement...........ccccuverimneminnnensnssssssssssssssssssnsssnns 141
Chapter 10: Physical Movement and Vehicles...........cocvverrnmnierinnsenssnnsnnssnnsnnnns 163
Chapter 11: Changing Object Attributesccocerrrrrrrrrssersessessessessessessenss 189
Chapter 12: Using PartiClesccocvrerrerrersersersessesssssessessessessessssssssasssssssssssnsses 201

Appendix A: Downloading EXamplesccccvccmrnmmnmnnnmsnnssmsnsssssnssssssssssssans 221

XIV Introduction to Linden Scripting Language for Second Life

Contents

Contents
INtrOdUCTION ... ——————— XXXI
Chapter 1: Introduction to Second Life Buildingcccocvrrrerrerrersersessessessenses 35
Creating Prims.........occocerrrressersessessessesssssessessesssssssssssssssssssssssasssssassnssnssnens 35
Modifying Prims ViSUaIlYcccocerrrerrersersessessesssssssssssasssssassssssssassassassnsses 36
Modifying Prims with the Properties Window...........cccocvrrrerrerressersensennes 39
LinKing PrIMScocirrncernsnsssnssnnns 46
Y111 1] |/ 47
Chapter 2: Introduction t0 LSLccccucervnmmimnneminnsessnssesssssssssssssssssssssssnssnnns 51
Second Life Programmingccoceerrersemsessessessessessessessasssssassessassassassnsses 51
(T 101310 T TR]+ 52
L LT 1 0] 55
111 T 0] 58
1] | | 60
Y111 1] |/ 61
Chapter 3: Script Control..........ccccvervmnimnsnminnersse s 63
Using If and Else Statements...........cccceovrrrerrerressessessessessessessessesssssssssssenss 63
Using SWitch and Casecccceererrerrersersessessessesssssssssssssssssessasssssassassnssnnss 67
USING LOOPS ...ccerinerrenierssnisssssnssnssssssnssnnsns 68
Y11 1] | 71
Chapter 4: State MacChingsccvcrvmnimnsnimnse s 75
What is a State Machine?ccccecerrrerrerrsressessessssssssessesssssnssnssnssnssnssnssens 75
Understanding Second Life State Machinesccccerrrerrerrersessersessensenns 76
Life With and Without State Machingscccceevrrrerrerressessessessessessessenns 77
Y111 1] | 80
Chapter 5: String Handlingcccocvrrrerrsrssessessessessessessessessessessessesssssnsssssnsses 83
String FUNCLIONScocveerrrrrerserser s ses s e s sessessessessessnssessnssnssnssnssnssnssnss 83
String COMPAriSONcccceeerrersersersersessessessessessessesssssessessasssssassassassassassnssnss 84
Using NOtecardscccccumrmrnmnnnnnmnsnssssssssnssssssssssssssssssssssssssssssssssssssnns 91
Y111 1] | 96
Chapter 6: CoOmmUNICAtioN..........ccucervrerierssnmisssersrse s 99

Speaking and LiSteningccocvrrrerrersersessessessessessessessesssssassessassassassnssess 99

XVI

Introduction to Linden Scripting Language for Second Life

Understanding Dialogs........ccummumsummmmsmmsmmssmsssssssssssssssssssssssssssssssssssssassassnnss 103
Instant MeSSAQEScccrrmrmimmmmssnssmssnsss s 104
Setting Prim TeXt ... ssnsssssss s ssssssssssssnssssssnssnnns 107
Linked MeSSaQES......cccurumsummumsumssmssmsssssssssssssssssssassssssssssssssssssssssssssassassassnsss 108
EY 11 11T 1 111
Chapter 7: EVENtS........cccccucrrminmnnisensssssnssssssnsssssssssssssssssssssssnsssssssssssssssssnssansns 113
Timer EVents........cccoimnnmnmmnssnssnss 113
Collision EVENtScccirmnmimmnnmsmsssnssnnns 114
Sensor EVeNts........ccmimiimimnnnnssssssssssssssss s 116
MONEY EVENLS ... e s s ssn e s ssnssssssnsssnssnsssnssnnans 119
Handling PErmiSSionsccccuccrrnminmnnssnsssmsnssssssssssssssssssssssssssssssssssssssnsns 122
Implementing Basic SECUKLY........ccccrrmirmrrmnssssnnses s ssesssnssnnnes 125
EY 11111 1 128
Chapter 8: LiStS.......ccurrmirrnnnsersnissnsssssssssnsssssssssssssssssssssssssssassssssssssnssssssnssanns 131
Adding and Removing ltems 10 Lists.........ccccorrcmnnrnnnnnnnsnnnsssnnsessnssensans 131
Retrieving Data from Listsccccccmrnmnminnnsninnnnsssssssesssssssssssssssssesssnsns 132
Lists @nd CSV.........ccumnmmmmmmmmmsmssmsssassnsns 134
List StatistiCS......ccummmmmmmmmmmmmmsnssss s ———. 136
Sorting, Searching and Striding Lists.........cccccecnnrnmnnnnnsnnsnssnnsesssnssessannns 138
BT 111111 T 139
Chapter 9: Non-Physical Movement............ccccvrmirnnninnnsnssnssnsssssssssssssnssanns 141
Second Life Coordinatesccovcrnsmmscsmssmsssssssmssssssssssssssssssssssssssssssssssnns 141
Displaying an Object's Location and Rotation............ccceerrrricnrrrinriennn. 144
Changing and Object's Location and Rotation..............ccccvrnrninnsensenseninnns 146
A Touring Balloonccccmirimrnrisnsesssssessssssssssssssssssssasssnssssssnssssssnsssnes 147
EY 11 1] 1 161
Chapter 10: Physical Movement and Vehicles...........cccuerremrrrisnnsenssnssnnssnssanins 163
Applying Force to an Avatar...........ccccccminmrrmnnnnnnnsnssnsssssnssesssssessssssnssanes 163
Applying Force to the Current Objectccccrmimnnnnnnnnnnsnss. 166
Second Life VENICIeSc.ccouvmrrsmsmsmssmssssmssmssnes 168
BT 111111 T 186
Chapter 11: Changing Object Attributesccocrmnnnmnnnnnn—. 189
Using lISetPrimitiveParamsccccocvrcmnnrnsnnnnsnssssnssesssssssssssssssssssssnns 189
Using lIGetPrimitiveParamscccccocvremnnnssnisnsnsssssssssssssssssssssssssssssnsns 197
Using lISetLinkPrimitiveParamscccccrremnnnnnnsnssnssnssssssnssssssnssesssnnns 198
Setting Attribute Propertiescccovrminmrrmnnninnnsssssssssssssessssssesssnssessnnnns 198
BT 111111 199

Chapter 12: Using Particlesccccunrrmnnnnmnsnssnssessnsssssssssssssssssssssssssssnssanns 201

Appendix A: Downloading Examples

Basic Particle Emitter

... 201
A FOg MACRINE.......ccccerrrrerrrssessssssessssssss s ssns s sssssssssssssnssanssnssasssnssanssnssnes 208
Snowflake Emitter...........cooiicrnsrrrsrr s 213
EY 11111 1 218

XVII

XVIII Introduction to Linden Scripting Language for Second Life

XX Introduction to Linden Scripting Language for Second Life

Contents

Table of Figures

Figure 1.1: The Build Window..........cccccecminmnmnnnnnnessnssssssssssssssssssssssssssnsssnns 36
Figure 1.2: Editing a Prim's Position..........ccccccrrmnnnnsnnnnssnsssssnssessssssssssnsssnns 37
Figure 1.3: Editing @ Prim's Sizecccceecvrrrrresressessessessessessessessessesssssssssssnsses 38
Figure 1.4: Editing a Prim's Rotationcccccermririmissisnnsnssnsssssssssnssnssanns 39
Figure 1.5: The General Properties of @ Primccccooerrrvrevresressessessessesenss 40
Figure 1.6: The Object Properties of @ Primccccocerrrrrrrerresressessessessessenns 4
Figure 1.7: The Features Properties of @ Primccoocvrvrrrrrerrerressessessensennes 42
Figure 1.8: The Textures Properties of @ Primccccoocervrrrvrerressessessessessenns 43
Figure 1.9: The Content Properties of @ Primccccceovrvrrrevrerressessessessensenss 44
Figure 1.10: A New SCriptccccerrrrrr e s s s ses s s s sessessessessessnssessnssnssnssnsaes 45
Figure 1.11: Linking @ SNOWMAN..........cccocerrrerrersersessessessessessessssssssasssssssssssasses 46
Figure 1.12: The Root Prim of the Snowman...........ccccoccrrrrrrrrrressessessessessenses 47
Figure 2.1: A NEW SCIipt.......ccceeererrerrerrersessessessessssssssessessessassessssssssassnssnssnssnsans 53
Figure 2.2: The Script Editor.........cccoocerrrrrmsessessessessessessessessessessessessnssnsssssnsses 54
Figure 4.1: A State MacChineccccererrerrerrersersesses s s sessessessessessnssessnssnssnssnsses 76
Figure 5.1: Creating a Notecardcccerrrrrerrerrersessessessessessessessessessnssnssnnses 91
Figure 6.1: Conversation on Channel 0..........cccccocererrrrersessessessessessessessessessesses 100
Figure 6.2: Second Life Dialogs..........ccocererrerrersersersessessessessessesssssassassassassassasses 103
Figure 6.3: Prim TeXt ... s ssnssssssssssssssssssssnssssssnsssnns 107
Figure 6.4: A Simple Linked ODjJECtccccerrrerrerrerrersessessessessessessessessnssnssnnses 109
Figure 7.1: A Payment Dialogcccoovrmrsmmnmnsnnsnnsesssnssssssnssssssssssssssssssssnsssnns 121
Figure 7.2: Money Dialog..........cccourrersmmsnmssnmssnssssssnssssssnssssssssssssssssssssnssssssnsssnns 122
Figure 7.3: Setting the Group of an Object...........ccceorrrrrrrrrrerrerressesseesessenns 127
Figure 9.1: Gyeonu and Surrounding Regionscccecvrerrerrersersessessessessessesses 142
Figure 9.2: Encogia IsSlandccocrrmrnnnmnnnnnnnssnsssssnssesssssssssssssssssnssanns 143
Figure 9.3: The Coordinate Systemccccecvrrrrrerrrsessessessessessessessessessessenses 144
Figure 9.4: A Touring BallooN...........cccccoccmrrnmnsnnnnnsnsnssssssssssssssssssssssssssnsssnns 148
Figure 10.1: ATrampoline.........ccccvrmrnmmnmssnmsnssssssssssssnsssssssssssssssssssssssasssnssanns 164
Figure 10.2: Marking an Object as Physicalccccocvrrrrrerrersessessessessessenses 166
Figure 10.3: A Car in Second Lifeccccerrrerrerrersessessessessessessessessessessssssssesses 168

Figure 10.4: Setting the Material TYPeccocvrrrerrerrerrersersessessessessessessessessesses 169

XXII

Introduction to Linden Scripting Language for Second Life

Figure 10.5: A Car with TW0o PasSSENQers........c..cceemrrmrrsmssnrssnssnsssnsssssssssssssnssanns 182
Figure 12.1: Basic Particle Emitter............cccccvvrremnnrisnisnsnnnssssnssesssssssssssssnsns 202
Figure 12.2: A FOg MAcChineccceeerrmnnmrsmnsnssnssesssnssnssssssssssssssssssssssssssssnsses 209
Figure 12.3: Snowflake TeXtUre.........cccccrvrrrmssersmssessnssnsssnssnsssssssssssssssssnsssnsns 213

Figure 12.4: A Snowflake Emitter.........ccccomrrrrminrnsnissnnncs s ssnnnns 214

XXIII

XXIV Introduction to Linden Scripting Language for Second Life

Contents

Table of Listings

Listing 2.1: Display Variable............ccccoomrnmnmnsnnnnssnnssssssssssssssssssssssssnsssnns 56
Listing 2.2: Script Level Variables.........cccccocerrrerrersersessessessessessessessessessssssssesses 57
Listing 2.3: Simple FUNCLIONccoveeeerrerrerrer s s s s sessessessessessessessnssnssnsses 58
Listing 2.4: Functions with Parameters............ccoccvrrrsminrinnnsnnsnnsnsssssnssnssnnns 59
Listing 2.5: Function that Returns Values...........ccccremrrminrnnssnnsnssnssnssnnsannns 59
Listing 3.1: A HEllo SCHiptccoeeererrerrerrersersessessessessessessessessessesssssessnssnssnssnsses 63
Listing 3.2: AWhile LOOPccvcrrmrrmnmrsenssnsssnsssssssssssssnsssssssssssssssssssssssssssnssanns 69
Listing 3.3: A While Loop Counts Backwardscceererrerrersersessessessessessenses 69
Listing 3.4: A DO/While LOOPccceeerrerrerrersersersessssssssassassessassesssssassassassassassnsses 70
Listing 3.5: A Do/While Loop That Executes ONCe.........cccocvrerrerrersersersersessenses 70
Listing 3.6: A FOr LOOPcccccursmrrmmsemsnsssmssnssssssssssnssssssssssssssssssssnssssssnssssssnssanns V4
Listing 4.1: Programming without State Machines.........c.cccoceerrrrrrerrersensenne 77
Listing 4.2: Programming with State Machinesccoceevrrrrrerressessessessennes 78
Listing 4.3: State eVeNts.........ccccervrrrerrerrersemsessessessessessessessessessesssssessnssnssnssnsaes 78
Listing 5.1: String COMPAriSONcccoerrrrrersersessessessessessessesssssassassassassassssses 84
Listing 5.2: A Simple NoOtecard...........cccererrerrerrersersessessessessessessessassessassassassasses 92
Listing 5.3: Reading Notecardsccccuerrmnsmrnmnsmmssnsssssnssssssssssssssssssssnsssnns 92
Listing 6.1: SQY HEll0cccoeveeererrerrerrer s sessessessessessessessessessessessnssnssnssnssnssnssnsaes 101
Listing 6.2: Instant MeSSageccccrrmnnmmnmnsnssnssesssnssssssssssssssssssssssssssnssanns 102
Listing 6.3: A Second Life Dialog........ccocererrersersersersersessassessassessassassassassassassasses 103
Listing 6.4: A SIimple PAgErccocererrerrersemsersesssssssssssassssssssessssssssassassasssssasses 105
Listing 6.5: The Green Button...........ccooerrrrrerresressessessessessessessessessessessnssnssnnses 109
Listing 6.6: The Red Button ... snssessnssssssssssssssssssssnsssnns 110
Listing 6.7: The Root Prim that Receives the Messagescccerrrisnrianns 110
Listing 7.1: Timer EVeNntsccccvcrrnnmnnnnnnsssssnsssssnsssssssssssssssssssssssssssnsssnsns 113
Listing 7.2: Working with ColliSiOns.........cccccerrerrersersersessessessessessessessessessassasses 115
Listing 7.3: AWater Splash..........cccocvrrrerrerrersersessessssssssessssssssesssssassessassasssssnsses 116
Listing 7.4: Notecard GiVerccocererrerrersersessersssssssassassessessessessassassassnssassasses 117
(IR (4T T 1 R0 - 119
Listing 7.6: GUESSING GAME........cocererrerrersersersersersasssssassassessassassassassassassassassasses 122
Listing 7.7: OWNEr SECUNLYccccrrrerrerrersersersessesssssassassessassessassassassassassassasses 125
Listing 7.8: Group SECUNLYccccererrerrersersersersessessssssssassessassesssssassassassnssassnsses 127
Listing 8.1: Dumping List Data............cccccvcrrmnnrrsmnnnnsnnsnnnssesssssssssssssssnsssnns 133
Listing 8.2: Display @ Listcccccvcrrnrnmnsnmnmnsnssnssssnssssssssssssssssssssssssssnsssnns 134
Listing 8.3: Convert @ List t0 CSVccccerrrrrerrersessessessessessessessessessesssssessnsses 135

Listing 8.4: Convert CSV 10 @ List.........ccoceorrrrerrersersessessessessessessessessessnssessnsses 135

XXVI Introduction to Linden Scripting Language for Second Life

Listing 8.5: Getting List Statisticsccorrmnrrnsmnnnnsnnnnsns s ssssessssssnssanns 137
Listing 9.1: Display Current POSItioN..........ccccocvrcmvrrrnssnsnsssssnsses s ssssssnsssnsns 145
Listing 9.2: Display the Current Rotation..........ccccoccrrerirricnrcrssnscsssscessessnnnn, 145
Listing 9.3: Changing Object Locationccccccvrrimirrnsnssesssnssessnssssssssssnsnns 146
Listing 9.4: Changing Object Rotationcccccvvrrmririnncrnsnssssnssessssssnnsnns 146
Listing 9.5: Rotation with liTargetOmega...........ccocrrmrrrinnrrnsnnsssssnssenssssnnsns 147
Listing 9.6: Configuring the Balloon.............ccccceeminrnnnsnnnnssssnssesssssssssssssnsns 148
Listing 9.7: A Touring BallooN.............cccvnrimnnmssnnsessnssesssnssessssssssssssssssssssssses 149
Listing 9.8: Balloon Seat SCript..........ccccvnrrminrnsmnnrnsnnsrsnssesss s ssssssssssssss 159
Listing 10.1: Trampoline Script ... ssssssssss 164
Listing 10.2: Main Car Script for the Root Prim (Car.Isl)c.ccceccrrerrrrinrnnnne. 171
Listing 10.3: Car Passenger Seat (CarSeat.Isl)cccremrmsnmsensnnsnnsansessassanens 183
Listing 10.4: Can't Sit Here (DontSitHere.Isl).........cccoovrmrmrrrinnisnssnssnnsnssnnsnns 183
Listing 10.5: Car Wheel (WheelScript.Isl)......c.cccccvrrrmirrnsnnsnsnnnsesssssnssssssnnsnns 184
Listing 10.6: Rotate the Hubcaps (WheelScript.Isl).........cccccrrerrrrisnrsersnssannns 185
Listing 11.1: Random Color Cube..........cccccrrmrrrrminernnnsrsnssesss s sssssssssnnns 198
Listing 12.1: Basic Particle Emitter (BasicParticle.Isl)ccccceecrrrrrrrinrinnnne. 202
Listing 12.2: A FOg MACRINEccccecrrmrnmrsmssensnssessssssessssssesssssssssssssssssssssnsss 209

Listing 12.3: snowflake EMItterccocvrmrrrrmnnssnnsssns s ssssssnssnnsnes 214

XXVII

XXVIII Introduction to Linden Scripting Language for Second Life

Contents

Table of Tables

Table 2.1: Variable TYPESccccrrrrrrrrrerssmssssssssssssssssssssssssssssssssssssssnssssssssssssns 55
Table 5.1: Linden String FUNCHIONS.........c.cccovrerrersersessessessessessessessessessessnssnssnnns 84
Table 6.1: Communication DiSTanCes...........ccovrerrerrersersessessessessessessessessassassnnss 102
Table 6.2: Message Target TYPES.......cccvcrrmrsmmsmssmmsssssnssssssssssssssssssssssssssnssanns 110
Table 8.1: Accessing Data in @ Listcccccvrmnnmnnmnsnnnnsnsssssssssssssssnsssssanns 133
Table 8.2: Accessing Data in @ Listccccccrrminmnnnnsnnnnsnssnsssssssssssssssnssanns 136
Table 8.3: StatistiC TYPES......ccccvrerrmrierinrr e 136
Table 10.1: Vehicle TYPESccoccvrrrrrerrrerssersssssssssssssssssssssssssssssssssssssnssssssssnsssns 178
Table 10.2: Floating Point Vehicle Parameters.............cccccverrmnnnnnnssnnsnssnnsanins 179
Table 10.3: Vector Vehicle Parameters............cccceerrminnnnmnsnssnssnssnssssssnssnsssnns 180
Table 11.1: Constants for lISetPrimitiveParamsccccecvrrrerrerrersessessessensenns 191
Table 11.2: PRIM_TYPE Constantsccocrmrersemsersessessessessessessessessessessnssnnss 193
Table 11.3: Holeshape Constantscccvmimmnnnnnessnsssssessssssssnns 195
Table 11.4: Bumpmapping Constantsccccccervrrrrrersessessessessessessessessassenns 196
Table 11.5: Shininess Constantsccccocvrvrrrnrnsssssessessessessessessessessessenns 196
Table 11.6: Material Constantscccceocvrrrerrersssssessessessessessessessesssssessassnnes 197
Table 12.1: PSYS_PART_FLAGS FIagscccesrrerrersersersessessessessessessassassassassenss 205
Table 12.2: PSYS_SRC_PATTERN ValUe€s........ccceerrerrersersersessessessessassessassassenss 206
Table 12.3: Remaining Particle Emitter Name-Value Pairscccccvvieriannne 207
Table 12.4: Fog Machine Attributes...........ccoovrrinmrnnnnnnnnnnsnnss s 212

Table 12.5: Snowflake Emitter AHIDULESc.cvccceviicmriisninesnnsssssessssesssssnenas 217

XXX Introduction to Linden Scripting Language for Second Life

Introduction

INTRODUCTION

The Linden Scripting Language allows residents of the Second Life World to program the
three dimensional objects around them. Without this programming objects built in Second
Life are motionless and non-interactive. Adding a script enables an object to interact with
the world around it. Second Life scripts allow objects such as cars, planes, amusement park
rides, weapons and other entertainment devices to be created.

This book teaches the beginning Second Life programmer to make use of the basics
of the Linden Scripting Language. Language fundamentals, such as variables, loops, lists,
events, functions and state machines are covered. The book then moves to more advanced
topics such as user interaction and non-physical movement. Later chapters show how to use
the Second Life physics engine to create vehicles.

To script in Second Life, one must know the basics of building. Chapter 1 begins with
a basic introduction to building. You are shown how to create prims and link them to form
objects. Rotation, position, and other more advanced attributes of prims are covered.

Chapter 2 begins with an introduction to the Linden Scripting Language. You are shown
how to create scripts and perform basic operations. This chapter introduces variables and
shows the structure of a script.

Chapter 3 focuses on script control. You will see how to cause your scripts to make de-
cisions based on variables. You will also see how to use the three different loop types that
Second Life makes available.

Second Life makes extensive use of state machines. Chapter 4 is exclusively dedicated to
state machines. You will see how to make use of state machines in a script. You will see how
to initialize a state and switch between states.

Strings hold textual information. Chapter 5 shows how to manipulate strings. You will
see how to compare strings, beyond the simple case sensitive comparisons provided by the
Linden Scripting Language. You will also see how to parse strings.

Object can communicate in nearly all of the ways that avatars communicate. Chapter 6
shows how to send instant messages, as well as communicate publicly with all avatars around.
Additionally, Second Life menus are covered.

XXXII Introduction to Linden Scripting Language for Second Life

Events are special functions that are called when something happens. Though events
were mentioned in pervious chapters, Chapter 7 looks at evens in greater detail. You will
also see how to use scanner and money events.

The Linden Scripting Language does not support arrays. Chapter 8 covers lists, which is
what the Linden Scripting uses to hold collection of items.

Chapters 9 and 10 cover physical and non-physical movement. Non-physical movement
works by changing the x, y and z-coordinates of an object. Physical movement applies a force
to the object and uses the laws of physics to move that object.

Chapter 11 shows how to modify prims. Prims can be modified by the script. Any attri-
bute that can be set visually, while building, can also be set by a script. This allows objects to
change attributes, such as their image textures, dynamically.

Chapter 12 covers particles. Particles are 2D objects that are often used to cause objects
to shine, burn or produce smoke. A variety of effects can be achieved using particles.

The examples are listed in this book. However, it is not necessary to type them out.
All recipes can be obtained, from Second Life, in fully working form. To obtain any of the
recipes, visit the Heaton Research HQ on Encogia Island. The Heaton Research HQ can be
found at the following location.

http://slurl.com/secondlife/Encogia/200/196/23

http://www.heatonresearch.com/download/

Introduction

XXX]IV Introduction to Linden Scripting Language for Second Life

Chapter 1: Introduction to Second Life Building

CHAPTER 1: INTRODUCTION TO SECOND LIFE BUILDING

¢ Creating Primitive Objects
¢ Modifying Primitive Objects
¢ Primitive Object Properties
¢ Linking Primitive Objects

This book explains how to program in the Linden Scripting Language. However, scripts
are always attached to a 3D object that was built by someone. This chapter will present a
basic overview of building in Second Life. Before learning to create scripts in Second Life, it
is very important to understand the basics of building objects.

Objects in Second Life are composed of primitive objects. Each primitive object in Sec-
ond Life represents a basic geometric shape. These primitive objects, or prims, are linked to
form bigger objects. The next section will explain how to create prims.

Creating Prims

To create a prim you must be in building mode. To enter build mode, click the build
button near the bottom of the Second Life screen. If the build button is disabled, you do not
have sufficient rights to build on the land that you are currently standing on. The owner of
the land can set the land permissions however they please.

If you do not own any land in Second Life, you will need to build at a sandbox. A sandbox
is a public area where everyone is allowed to build. To find a sandbox, use the search button
to search for “sandbox”.

Once the build button is successfully clicked, the build window will appear. The build
window can be seen in Figure 1.1.

35

36

Introduction to Linden Scripting Language for Second Life

Figure 1.1: The Build Window

W Second Life
File Edit View World Tools

Gl Y
lick in the world t

EAV TS
EEEam

h‘:d

") [OhjEct™ [Featiires) Textiite

9@ (@il T
Communicate Ghz Fliy Snapshot Search (Build Mini=Map Inventon
‘!‘ﬂ VM E R £ [% SecondLife f LAES 3¢ zmoem

As can be seen from the build window, a number of different geometric prims can be
created. Select the geometric figure that you would like to begin your object with. Creating
an object in Second Life is a process of creating geometric primitives and then linking them.
After the geometric primitive has been selected, the mouse cursor will look like a “magic
wand”. Move the “magic wand” to where the prim should be created and click the mouse.
The prim will be created.

Modifying Prims Visually

After the prim has been created, it can be modified. There are two primary ways to
modify a prim in Second Life. Firstly, the prim can be modified visually, through the use of
the mouse. Secondly, the prim can be modified directly by editing its values in the prim's
properties window. This section describes how to modify the prims visually.

Three attributes can be edited visually using the mouse. These attributes are:

® position
® size
e rotation

Chapter 1: Introduction to Second Life Building 37

In the following sections you will learn how to visually modify each of the above attri-
butes.

Visually Editing a Prim's Position

When a prim is selected red, green and blue arrows will appear around the prim. These
arrows can be used to change the position of the prim. Drag the arrow that is pointing in
the direction you want the prim to be moved. The arrow can then be used to move the prim.
Figure 1.2 shows a prim having its position changed visually.

Figure 1.2: Editing a Prim's Position

\'_'EZ Second Life
File Edit View World Tools Help @) @@

1€ Can
@ (&TEK i |

Communicate lyr Snapshot Search (Build . V1 Inventony
— T

s :: A ol (<] [W Second Life L < @ gsaem

The prim can now be dragged in any of the three dimensions by dragging the arrows
around the object.

Visually Editing a Prim's Size

When a prim is selected, holding down the ctrl-shift will replace the red, green and blue
position arrows with red, green and blue resize boxes. A prim with resize boxes can be seen
in Figure 1.3.

38 Introduction to Linden Scripting Language for Second Life

Figure 1.3: Editing a Prim's Size

El_%f Second Life . = S
File Edit View World Tools Help) € Enc

Use Grid
optionse

Encog's

JWNEL Cdin
o (&l L |
Eommunicate Fliy Snapshot Search I Build Y L Mini=Map Inventony
2 BRI £ | Y secondLlic f

By dragging the resize boxes, the prim can be resized.

Visually Editing a Prim's Rotation

It is also possible to visually rotate a prim. When a prim is selected, holding down the
ctrl key will replace the red, green and blue position arrows with red, green and blue rotation
arrows.

Chapter 1: Introduction to Second Life Building

Figure 1.4: Editing a Prim's Rotation

\'_'l_ﬁf Second Life B) .9 R
File Edit View World Tools Help &) € Encog

*@ alle M el

Eommunicate Ghat iy Snapshot Search (Build) ¢ Mini=Map Inverton

A ERE | ¥ s @ 2s57PM

By dragging the rotation arrows, the prim can be rotated.

Modifying Prims with the Properties Window

It is also possible to modify many of the properties of a prim by editing the prim's proper-
ties window. Right-clicking a prim and then selecting “Edit” will bring up the prim's proper-
ties window. Figure 1.5 shows the properties window for a prim.

39

40

Introduction to Linden Scripting Language for Second Life
Figure 1.5: The General Properties of a Prim

W Second Life
File Edit i Tools Help @) #@0 Enc

Featires: Texture

P (8Tl I 0] B
Snapshot Search (Build Mini=Map Inventony

! W second Life LAEO F¢ ssapMm

When editing a prim the properties window will appear. There are several tabs that
can be selected to edit different aspects of the prim. The tabs that appear with any prim are
shown here.

¢ General
e Object

e Features
e Texture
e Content

Each of these tabs allows a different set of properties to be edited. The next few sections
describe how to edit the properties on each of these tabs.

General Prim Properties

The general properties are shown in Figure 1.5. The general properties allow basic
properties, such as the prim's name and description to be edited. The primitive's owner and
creator are also shown. The creator of a prim can never be edited. However, it is possible to
change the owner of a prim by selling that prim.

Chapter 1: Introduction to Second Life Building 41

There are checkboxes that allow the permissions of the prim to be set. These allow the
next owner to copy, modify or sell/give away the prim. You can also define what other uses
are allowed to do to this prim.

Object Prim Properties

The object properties tab allows the size, position, rotation and other important proper-
ties of a prim to be edited. Figure 1.6 shows the object properties of a prim.

Figure 1.6: The Object Properties of a Prim

\'_'gi Second Life
File Edit w World Tools Help (@) @ Encog
* - X

Featiires: Texture

§® (&K I |

Eommunicate lyr Snapshot Sedrch (Build Mini=Map Inventony

> A | (<] I W Second Life < @ %00 PM

The object and texture properties are the two tabs most commonly used for Second Life
building. The object tab allows the x, y and z values for the position, size and rotation to be
specified. The visual method of adjusting size, rotation and position is often used, but then
the numbers are adjusted so that they are even. For example, if I rotate a prim to 93 degrees
visually, I will edit the 93 degrees to be 90 degrees. This allows all of my angles to be “true”
and produces a more “mathematically perfect” final object.

Other properties, such as path cut, hollow, twist, taper and top shear can bend, twist and
hollow the object. The best way to get a feel for these properties is to place a simple prim and
then adjust the properties and observe the effect.

42

Introduction to Linden Scripting Language for Second Life

The material type of a prim can also be defined. Wood is the default material type. Most
objects created in Second Life never change the material type. As a result, most of the Sec-
ond Life world is made of wood. The material property is really only useful for defining
the friction between the prim and other prims. For example, glass has very little friction,
whereas rubber has a great deal of friction. Friction will become very important later in this
book when “physical” objects, such as vehicles, are created.

Features Prim Properties

The features prim properties tab allows lighting and flexible path options to be set. Fig-
ure 1.7 shows the features properties tab.

Figure 1.7: The Features Properties of a Prim

\'_'gi Second Life .
FAle Edit View World Tools Help &) @88 Encogia 168, 156, 50°
—

h
a
-
-
-
a
>
-
-
a
-
-
-
a
-
-
-

1L 1L

§@ (&K I |

Gommunicate lyr Snapshot Sedrch (Build Mini=Map Inventony

\ :# , | <) I W Second Life L4 EC @ cnrm

There are two check boxes, as seen on Figure 1.7. The first check box, the flexible path,
allows a prim to be flexible. A flexible prim flexes in response to wind, movement and gravity.
Flexible prims are used to create flags, flexible hair, and flexible clothing in Second Life.

The second Check Box, light, allows the prim to emit light. Various options can be de-
fined for light, such as color, intensity, radius and falloff. The light produced by a prim is most
clearly visable at night.

Chapter 1: Introduction to Second Life Building

Texture Prim Properties

The textures properties tab of the prim properties window allows the texture for a prim
to be defined. The texture of a prim defines what material the prim appears to be made of.
The textures property tab can be seen in Figure 1.8.

Figure 1.8: The Textures Properties of a Prim

\'_'l_%f Second Life I ‘EI.L_X

Fle Eit View World G ncogia 68, 156, 505 (FG) -Am 7:01 PMPST @& 1$56,701 [EnamRE

link
Ruler mode Warld b

Generaly [OBJECE™ [Feafiires

= 1.000 B flip
> DO @

P &l L |

Communicate E Ly Snapshot Search (Build Mini=Map I Inventony

:# y ol] ! W Second Life > @l e01 M

As can be seen from the above properties tab, the texture can be selected as well as the
color. To create a solid color prim, choose the texture “blank” and then select the color. The
shininess of the texture can also be chosen. This allows some interesting effects to be cre-
ated. Shininess can also be defined for prims. The textures can also be scaled and offset.

Content Prim Properties

The content properties tab for a prim allows objects to be placed inside the prim. This is
where scripts are added. Figure 1.9 shows the content properties of a prim.

44 Introduction to Linden Scripting Language for Second Life

Figure 1.9: The Content Properties of a Prim

W Second Life
i Tools Help @) #80 Enc

Featires: Texture

NEW Serpte

M Contents

S (8 iTalk] ‘l

Communicate iy Snapshot Search (Build Mini=Map Inventory

e £ & Second Life LOES @3¢ asem

Objects placed into the content tab of the prim have no effect on the visual appearance
of the prim. Objects placed here are used by the scripts that execute within the prim. Each
prim can have several scripts that execute. Objects in Second Life are usually made of a num-
ber of linked prims. Each of these linked prims can have its own set of content.

Content includes scripts and everything needed by scripts. Audio files, scripts, textures
and other objects can all be included in an object. Later chapters will show how to use some
of these objects in conjunction with a script. To create a script in an object, right-click the ob-
ject and choose “Edit”. Then choose the “Content” tab of the prim properties window. Press
the “New Script” button. A new script is created, as shown in Figure 1.10.

Chapter 1: Introduction to Second Life Building

Figure 1.10: A New Script

W Second Life
File Edit View World Tools

S N ==

Options

Generaly [OGJECt™ Feafiires: Textire

S (8 Talk

Snapshot Search (Build Mini=Map T Inventory

¢ qg RN A "% Sccond Lite B 9:03 PM

Second Life provides default code for the script. This default script can be seen by
double-clicking the “New Script” shown in Figure 1.10. The default script can be seen
here.

default
{
state entry()
{
11Say (0, "Hello, Avatar!");
}
touch start (integer total number)
{
11Say (0, "Touched.");
}

The default script does very little, it is simply a placeholder until a more complex
script is created.

45

46

Introduction to Linden Scripting Language for Second Life

Linking Prims

Prims can be linked. When several prims are linked, they move together. This is how
larger, more complex objects are created in Second Life. To link more than one object in
Second Life, select multiple objects and choose the “Link” option from the “Tools” menu. To
select more than one object begin by selecting the first object, and then hold down the “Shift”
key to select additional objects. The additional objects will be highlighted in yellow. Figure
1.11 shows three “snow balls” of a snowman about to be linked.

Figure 1.11: Linking a Snowman

$ Secordlife 0000000 . s
File Edit View World Tools Help @ Encogia 168, 156, 505 (PG) - Am 7:06 PMPST @ LS

Heator

CAUTION
Vel
Lab

'a
@ @mlke |

Gommunicate Ghat Ely Snapshot Search (Build) @ MinisMap
— e e A A e I

f ‘v‘:' o =] 2 ! W Second Life A @) 006 PM

Objects can also be unlinked. Select one, or more prims of the linked object. If you
would like to select individual prims of a linked object, the “Edit linked parts” check box
on the build window must be checked. Once the prims to be unlinked have been selected,
choose the “Unlink” item from the “Tools” menu.

Not all prims in a linked object are equal. One special prim is called the “root prim”. The
root prim is the prim that all movement to the object occurs on. You can think of the root
prim as what is actually moving, everything else is simply attached to the root prim. When
vehicles and physical objects are created, the root prim becomes very important. All rotation
to the compound object is performed on the root prim, the other parts simply follow.

Chapter 1: Introduction to Second Life Building 47

The root prim is always the last prim that was added to an object. You can easily view the
root prim by selecting an object. All non-root prims will show up as cyan. The root prim will
show up as yellow. Figure 1.12 shows the snowman. The base of the snowman is the root
prim. Asyou can see, from Figure 1.12, the base of the snowman is outlined in yellow.

Figure 1.12: The Root Prim of the Snowman

& Second life L. i D
File Edit View World Tools Help @& Encogia 168 505 (PG) -Am 7:07 PMPST @& L%

CAUTION

Encog’s
Lab

@ (8K |
Snapshot Seadrch (Build) O MiniEMaEp Inventory

4 B %07 PM

Summary

This book is primarily about scripting which requires some basic building knowledge.
This chapter introduced the basics of building in Second Life.

Objects in Second Life are created by linking prims. Prims are basic geometric shapes
that form the building blocks of more complex Second Life objects. When prims are linked
together, the last prim selected becomes the root prim for the object. All motion occurs on
the root prim, the other prims act as if they are attached to the root prim.

48

Introduction to Linden Scripting Language for Second Life

The Linden Scripting Language allows computer programs to be embedded in the 3D
objects that make up the Second Life world. These programs define how the Second Life
objects interact with the world around them. The next chapter will introduce the Linden
Scripting Language.

Chapter 1: Introduction to Second Life Building 49

50 Introduction to Linden Scripting Language for Second Life

Chapter 2: Introduction to LSL

CHAPTER 2: INTRODUCTION TO LSL

¢ Using Scripts
¢ Understanding Variables
¢ Processing Events

Second Life (SL) is an extremely popular, massively-multiplayer online game (MMOG).
Many consider Second Life to be much more than a game. Second Life is somewhat like the
movie “The Matrix,” in which people live and work in a simulated world. Second Life is very
similar; your computer player, called an avatar, lives in Second Life's 3D world.

However, unlike “The Matrix,” current computer technology is not sufficiently advanced
to comprehensively simulate a physical world. This means Second Life has two shortcom-
ings.

First, you see the world of Second Life through a computer screen, which - even though it
uses state-of-the-art 3D graphics - gives the simulation a cartoonish look. Despite this, many
areas in Second Life are visually stunning.

Second, the simulation of Second Life is not a complete physical simulation. Important
elements, including gravity, are present. However, you could not completely simulate some-
thing as complex as an automobile in Second Life. It's still too difficult to simulate all the as-
pects of the internal combustion engine and electrical components of a car. Modern comput-
ers are not powerful enough to do this. Still, there are cars and many other sorts of vehicles
in Second Life. The gap between real physics and Second Life physics is bridged using scripts
created in Second Life.

Second Life Programming

Second Life provides a scripting programming language called the Linden Scripting Lan-
guage (LSL) to fill in the gaps left by Second Life's simple physics engine. Rather than simu-
late every aspect of a car, a programmer creates a script that tells the car how it should move.
This script can play sounds, turn the car and even detect collisions. For example, to add real-
ism, a car script could prevent the car from turning when not in motion.

This book provides an introduction to LSL. For you to obtain the greatest benefit, I rec-
ommend that you have a basic knowledge of “building”, but that's not required to understand
the book's code. Building is the process by which you place 3D primitives into the Second
Life world. Builders have created everything that you see in Second Life.

51

52

Introduction to Linden Scripting Language for Second Life

The Linden Scripting Language looks much like C at first glance. However, it is much
easier to program than C. There are no pointers and you can do direct string comparisons
without using functions such as s t remp. LSL is not object-oriented; you cannot create your
own objects, and the language provides only a few 3D-related objects for you. LSL is state
based. Every LSL script has a specific state and carries out its functions by moving through
a series of states. This is quite a different concept from most programming languages. While
you can build state machines in most languages, in LSL the concept of a state machine is
inherently part of the language.

LSL scripts reside inside 3D primitives in Second Life. Objects are collections of primi-
tives. For example, a car in Second Life would be a single object. However, the car object
would be made up of many primitives, each of which may contain its own script. Additionally,
these primitives can communicate with each other or even with human players. With more
advanced programming, primitives can even communicate with web pages external to Sec-
ond Life.

LSLis also event driven. Most objects in Second Life work by progressing through states
driven by events. Second Life provides many different event types. Most are user-based,
such as when a user touches or sits on an object; however, it also supports timer events that
require no user interaction.

Creating a Script

Second Life scripts are contained in prims. Each prim can contain one or more scripts.
To create a simple script, rez a cube onto the ground. Edit the cube and select the “Content”
tab. If you do not see the “Content” tab, select the “More>>>" button. The Content tab shows
all of the items contained inside of the box. Prims can contain many different types of objects.
Prims can also contain other prims.

Prims usually contain scripts and other objects useful to those scripts. For example, an
automobile may contain a script to run the car. The automobile might also contain sounds to
play when the car is started or shut off. To create a new script in the box that was just rezzed,
select the “New Script...” button. This will add a script named “New Script” to the content
pane. This script can be seen in Figure 2.1.

Chapter 2: Introduction to LSL 53

Figure 2.1: A New Script

W Second Life

Fle Edit View World Tools Help (@) @@ Encozial S [search [7]

Ruler mode: orld b4 tless

GEneral ! Featires: Texture [Content \
He

WHEW Scrpt)

~ I Conte

P (& Talk i il
Communicate Chat Snapshot Search (W\ Mini=Map Map Inventony
\ - | \
(A = w2 W Second Life

To edit the script, double click the new script. This will open the script editor. The script
editor can be seen in Figure 2.2.

54

Introduction to Linden Scripting Language for Second Life

Figure 2.2: The Script Editor

W Second Life
file Edit View World Tools

state_sntryl)

115ay(@, "Hello, Avatar!");

touch_start({integer total_nunber)

115ay(@, "Touched."l;

NEWSErHpt

~ [Contents

£ New Script

RUn

P (8 Talk L ‘l

Communicate ! Snapshot Search Build) @'Mini=Map Inventony

\ :g : ol K‘j I f{i' Second Life &Hh g EI’ =4 837PM

Whenever a new script is created a “generic script” is placed inside of the script. This
“generic script” can be seen in Figure 2.2. This is the starting point for all scripts created in
Second Life. One of the first things to notice about the script, shown in Figure 2.2, is the use
of curly braces. Second Life scripts are broken into blocks of code. These blocks begin with
an opening curly brace ({) and end with a closing curly brace (}).

A block of code can contain other blocks of code. For example, Figure 2.2 shows a block
of code named default. The word “default” appears just before the opening curly brace.
Inside of the default block of code there are two other blocks of code. The first is named
state entry. The secondis named touch start. The default block of code
contains the other two blocks of code.

Blocks of code group the code contained within them together. The default block
of code defines one state of the script. Scripts in Second Life are implemented as state ma-
chines. Scripts begin in the default state and each script must provide a default
state. .Scripts are not required to contain any state other than the default state. For the
script shown in Figure 2.2 there is only the defaul t state. State machines will be covered
in Chapter 4.

Chapter 2: Introduction to LSL 55

Variables

Variables allow a script to hold information. Unlike many scripting languages, Second
Life variables are strongly typed. For example, to declare an integer, named i, use the
following code.

integer i;

Once declared, the variable can be assigned using the equals operator. For example, to
assign the variable i to the value of zero, the following code would be used.

The above expression can also be expressed with the following shorthand:
i+=1;

Additionally, if the value of i is to be incremented by only one, the following shorthand
can be used:

i++;

Second Life supports a number of variable types. These types are summarized in Table
2.1.

Table 2.1: Variable Types

Type Description

integer A whole number ranging from -2,147,483,648 to 2,147,483,647.

float A decimal number ranging from 1.175494351E-38 to 3.402823466E+38.

vector Three floats in the form < x, y, z>. Usually a position, color, or Euler
rotation.

rotation A quaternion rotation, made up of 4 floats, <x,y,z,s>

key A UUID (specialized string) used to identify something in SL, notably an
agent, object, sound, texture, other inventory item, or dataserver request

string A sequence of characters, limited only by the amount of free memory
available to the script.

list A heterogeneous list of the other data types.

56

Introduction to Linden Scripting Language for Second Life

The two numeric types are integer and £1oat. The type of integer should be
used when no decimal places are required. If decimal places are required, then the numeric
type, £1loat, should be used. The other variable types, described in Table 2.1, will be de-
scribed in later chapters.

A variable's scope defines from where the variable may be accessed. The Linden Script-
ing Language supports two levels of variable scope. Variable scope will be explained in the
next section.

Variable Scope Types

Declaring a variable in a script does not necessarily make that variable accessible from
anywhere in the script. The accessibility of a variable is referred to as variable scope. Where
the variable is defined at determines the variable's scope. There are two types of variable
scope in Second Life.

¢ Local Variables, and
¢ Script-Level Variables

The next two sections will describe each of these scope types.

Local Variables

Local variables are variables defined inside of a function. These variables can only be
accessed from within the function they were declared in. Also, they can only be accessed by
parts of the function further down than where they were declared. For example, consider the
following script that displays the value of the i variable.

Listing 2.1: Display Variable

default
{
touch start (integer total number)
{
integer 1i;
i=0;
11Say (0, "The value of i is: " + (string)i);
1

The above code is inside if the function touch start. Thisisa special type of func-
tion, called an event. Events and functions will be explained later in this chapter. Events and
functions are blocks of code that are called at certain times. The touch start eventis
called whenever an avatar touches the object containing the script.

First the integer i is declared. Next the variable is assigned a value of zero. This
object then “says” what the value of the variable is. Notice the 11 Say function call. This is
very important, as it is how many of the early programs in this book will communicate. Using
the 11Say function, an object can communicate in a similar manner to an avatar. The first

Chapter 2: Introduction to LSL 57

parameter to 11Say specifies the channel. Channel zero means that every avatar around
will hear the communication. Sometimes objects will want to communicate with each other
over private channels. To display the variable, a typecast of (string) is used to covert it
to a string.

It is very important to use the variable only after it has been declared. The following
script is invalid because the variable is displayed before it has been declared.

default
{
touch start (integer total number)
{
11Say (0, "The value of i is: " + (string)i);
integer 1i;
i=0;
!

Additionally, other functions cannot access the local variable declared inside of other
functions.

Script-Level Variables

Local variables are limited in their scope. They can only be accessed within a single
function. Additionally, the value of a local variable is reset each time the function is called.
This can be very limiting. Often a script will want to hold onto values indefinitely. Script-level
variables hold their values indefinitely and they can be accessed by any function in the script.
The following shows a script-level variable, named count, being used.

Listing 2.2: Script Level Variables

integer count;

default
{
state entry()
{
count = 0;
}
touch start (integer total number)
{
count ++;
11Say (0, "Count: " + (string)count) ;
}

58

Introduction to Linden Scripting Language for Second Life

The above code implements a simple counter. The counter is reset to zero when the
script first starts. When the default state is entered, the state entry event func-
tion is called. In this function the count variable is reset to zero. Each time the object is
touched the touch start event function will be called. This will increment the count
variable and the value of the count variable is then displayed.

Notice where the count variable is declared. Placing the count variable's declara-
tion outside of any state causes the variable to be script-level.

Functions

A function is a named block of code that can be called from elsewhere in the script. First
we will examine a simple function that accepts no parameters and does not return anything.
The following code demonstrates this.

Listing 2.3: Simple Function

integer count;

display ()
{
11Say (0, "Count: " + (string)count) ;
}
default
{
state entry()
{
count = 0;
}
touch start (integer total number)
{
count ++;
display () ;
}

The above code defines a function named display. Notice where the function is de-
clared. It is declared outside of any state. Functions cannot be defined inside of a state. Only
events can be defined inside of a state. Events will be covered in the next section.

The above function simply displays the count. The new function is called by the following
line of code.

display () ;

Chapter 2: Introduction to LSL 59

Functions can also accept parameters. The following script demonstrates a function that
accepts one parameter.
Listing 2.4: Functions with Parameters

integer count;

display(integer i)

{ 11Say (0, "Count: " + (string)i);
}
default
{
state entry()
{
count = 0;
}
touch start (integer total number)
{
count ++;
display (count) ;
}
}

The display function accepts a single parameter named i. This parameter is the
value that is to be displayed. To call a function with a parameter the following code is used.

display (count) ;

As can be seen, the count variable is passed into the di splay function. It is not pos-
sible for a function to modify the variable that was passed to it.

Functions can also return values. The following script demonstrates how to use a func-
tion that accepts two parameters and returns a value.
Listing 2.5: Function that Returns Values

integer count;

integer multiply (integer x,integer y)

{
integer result = x * y;
return result;

1

default

{

60

Introduction to Linden Scripting Language for Second Life

state entry ()

{ count = 0;
}
touch_start (integer total_number)
{
integer x = multiply(5,10);
11Say (0, "Result: " + (string)x);
}

The above script declares the multiply function to return an integer. Did you
notice the keyword integer before the “multiply” function name? This specifies the type
that the function should return. Once a type is specified, the function must containa return
statement. The return statement specifies what value should be returned to the caller of the
function. The following line of code calls the multiply function.

integer x = multiply(5,10);

The parameters 5 and 10 are passed into the function. The multiply function then multi-
plies these two numbers and returns the result. The asterisk (*) operator is used to multiply.
The slash (/) operator is used to divide.

Events

Events are a special type of function. Events are the only functions that are allowed in-
side of a state. Event functions are not usually called by other functions. Event functions are
called by Second Life itself. Second Life calls an event function when something happens that
might be of interest to the script. Usually events are called because of some interaction on the
scripted object either by the Second Life world or another use.

Events have very specific names. This name tells Second Life what event type this func-
tion is designed to handle. So far this chapter has used two specific events: touch start
and state entry.

The touch start eventis called by Second Life whenever an avatar touches an ob-
ject. If you need to know when the avatar has simply clicked an object, touch startcan
be used. There is also a touch end. The touch end event is used when you need to
track how long the avatar has touched an object.

The state_entry event function is called whenever a new state is entered. When
multiple states are created, each state will usually have a state entry event function to
setup for that state.

There are many more event types in Second Life than were covered here. Events will be
covered in much greater detail in Chapter 7.

Chapter 2: Introduction to LSL

Summary

The Linden Scripting Language (LSL) is used to create objects in Second Life that inter-
act with the world around them. LSL is often used to overcome shortcomings in the Second
Life physics engine. This book will introduce LSL.

Scripts can be created inside of any prim in Second Life. Once a Script is created in a
prim, that script can be edited to produce the desired functionality. Script programming is
done completely inside of the Second Life world. This chapter introduced fundamental con-
cepts such as variables and functions.

The next chapter will expand on this one by showing how to create scripts that can make
decisions. Fundamental LSL statements that allow these decisions to be made will be intro-
duced.

61

62 Introduction to Linden Scripting Language for Second Life

Chapter 3: Script Control

CHAPTER 3: ScripT CONTROL

¢ If/Else Statements
e While Loops

¢ Do/While Loops

¢ For Loops

There are many control statements that can be used to allow scripts to make decisions.
The Linden Scripting Language provides several statements that allow the execution of a
script to be controlled. Parts of the script can be selectively executed based on input criteria.
Loops can also be used to execute certain parts of the script a number of times. This chapter
will explain how to control scripts in this way.

In this chapter i £ /el se statements will be introduced. These allow a script to make
decisions. In addition to 1 £/else statements, switch/case statements can also be
used to make decisions. For, while and do/while loops will be introduced to allow
your scripts to repeatedly execute a block of code.

Using If and Else Statements

If/else statements allow the script to make decisions. These decisions are usually
based on variables. An 1 £ statement will execute a block of code if the statement evaluates
to true. An el se statement can be used in conjunction with the i £ statement. If the 1 £
statement evaluates to £alse, the i £ statement's el se statement will be executed. Not
all 1 £ statements will have an else statement. The el se statement is optional.

The next section will show how to use 1 £ statements.

Understanding If-Statements

Consider a simple script that will say hello to any avatar that says hello to the object con-
taining the script. Such a script is shown in Listing 3.1.

Listing 3.1: A Hello Script

default

{

state entry()

{
}

llListen(0, "", NULL KEY, "");

63

64

Introduction to Linden Scripting Language for Second Life

listen (integer channel, string name, key id, string message)

{
if (11ToUpper (message) == "HELLO")
{
11Say (0, "Hello " + name) ;
}
}

The state entry event is called first. This event uses the 11Listen function
call to request that the 11 sten event be called whenever something is said near the object
that contains the script. The first parameter to 11Listen specifies that the script should
listen on channel zero. The second parameter specifies the avatar to listen for. Because an
empty string is specified, the script will listen to all avatars. The third parameter allows an
avatar to be specified by key. The fourth parameter specifies the message desired. If a value
is specified for the fourth parameter, only messages that exactly match that value will be
received.

Every time that something is said near the script, the 1isten event will be called.
The 1isten event uses an i £ statement to look for the world “hello”. Notice how the 1 £
statement uses the 11 ToUpper function. This allows the script to be able to respond for
“Hello”, “hello”, “HELLO” or any other combination of capital and lower case letters. Also no-
tice the double equal (==). This specifies that this is a comparison. A single equal (=) is only
used to assign a value to a variable.

An i f statement can also be used with numbers. For example, to check to see whether
the variable a is equal to 10, the following statement would be used.

if(a == 10)
{

11Say(0,"a is 10");
}

It is also possible to use comparison operators other than equal. To see whether the vari-
able a is not equal to ten, the following code is used.

if(a !'= 10)
{

11Say (0,"a is not 10");
}

Greater than and less than can also be used. The following code checks to see whether
the variable a is greater than ten.

if(a > 10)

{

11Say (0, "a is greater than 10");

}

Chapter 3: Script Control

Greater than or equal can be used as well. The following code checks to see whether the
variable a is greater than or equal to ten.

if(a >= 10)

{

11Say (0, "a is greater than or equal to 10");

}

It is also possible to use boolean logic in an 1 £ statement. This will be explained in the
next section.

Using Boolean Logic

Boolean logic can also be used with an i £ statement. The and (&&) and or(| |) opera-
tors allow two comparisons to be used in an i £ statement. For example to check whether the
variable a is equal to 5 or 6, the following code could be used.

if(a==5 || a==6)

{
}

11Say(0,"a is 5 or 6");

The or statement requires only one half of the expression to be true. If the variable a is
equal to 5 or the variable a is equal to 6, then the i £ statement will execute.

The and operator is much more selective. The following i £ statement checks to see
whether the variable a is greater than 5, yet less than 10.

if(a>5 && a<1l0)

{
}

11Say (0, "a is greater than 5 and less than 10");

For this i £ statement to execute, the variable must be greater than five, as well as less
than ten. If just one of these requirements is not met, the i £ statement will not execute.

Understanding Else-Statements

Else statements can also be used in conjunction with i £ statements. Consider the fol-
lowing script segment.

11Say (0,"a is equal to 5");

}

else

{
}

11Say (0,"a is not equal to 5");

65

66

Introduction to Linden Scripting Language for Second Life

The else statement follows the i £ statement. If the 1 £ statement does not execute,
the el se statement will execute. It is illegal to have an else statement without a corre-
sponding i £ statement. Unless some sort of error occurs, it is impossible to make it through
an 1 f/else statement without executing either the i f statement's block of code, or the
else statement's block of code.

Itis also possible to use an else i f statement. This is a combination of the el se and
i £ statements, as seen below.

11Say (0,"a is equal to 5");

}

else if (a==6)

{
}

11Say (0, "a is equal to 6");

The above code contains two i £ statements. If a is not equal to five, then the second i £
statement is checked. If a is not equal to six, nothing happens. Any number of 1£/else
statements can be strung together in this way. It is possible to create lengthy 1 £/ else lad-
ders in this way. It is also possible to attach a final e1 se statement to the ladder to execute if
none of the above 1 £ statements executed. The following code demonstrates this.

11Say (0,"a is equal to 1");

}

else if (a==2)

{
}

else if (a==3)

{
!
else

{
}

11Say (0,"a is equal to 2");

11Say (0,"a is equal to 3");

11Say (0,"a is not equal to 1, 2 or 3");

The code above will execute one of the i £ statements if the variable is equal to one, two
or three. The final else statement will be executed if none of the above three 1 £ state-
ments match. The above technique is quite common in programming. Often the variable will
be compared against a list of numbers. The Linden Scripting Language contains a special
statement just for this situation. The switch and case statements can be used to better
represent the above code. The switch and case statements are explained in the next
section.

Chapter 3: Script Control

Using Switch and Case

An if/else ladder can be used to compare a long list of numbers. However, the
Linden Scripting Language gives you another way to compare a long list of numbers. The
switch and case statements can also perform this task. The following script segment
would compare the variable a against the numbers one, two and three.

switch(a)
{
case 1:
11Say (0, "a is equal to 1");
break;
case 2:
11Say (0, "a is equal to 2");
break;
case 3:
11Say (0, "a is equal to 3");
break;

The switch statement above compares the variable a to three values. The switch
statements can only be used to compare numerical integer values. Notice how each
case statement ends with a break statement. This defines how much code should be
executed by the case statement. If the break was to be left off, the case statement
that matched the number would continue executing past the next case statements until a
break is encountered. Generally, a break statement should be inserted for each case
statement. However, there are times when it may be desirable not to do this. For an example,
consider the following swi tch statement.

switch(a)
{
case 1:
case 2:
case 3:
11Say(0,"a is equal to 1,2 or 3");
break;
case 3:
case 4:
case 5:
11Say (0, "a is equal to 4,5 or 6");
break;
case 7:
11Say (0, "a is equal to 7");
break;

In the above swi tch statement, there is no longer one case statement per break
statement. If the number is one, two or three, the first block of code is executed.

67

68

Introduction to Linden Scripting Language for Second Life

If the variable does not match any of the case statements, the swi tch statement will
not do anything. However, if a default statement is provided, then the switch state-
ment will execute the default statement. Consider the following script segment.

switch(a)
{
case 1:
11Say (0,"a is equal to 1");
break;
case 2:
11Say (0,"a is equal to 2");
break;
case 3:
11Say (0,"a is equal to 3");
break;
default:
11Say (0, "a is not equal to 1,2, or 3");
break;

In the above script segment, a default statement is executed if the first three case state-
ments did not execute.

Using Loops

Loops allow a script to execute a block of code a certain number of times. Like many pro-
gramming languages, the Linden Scripting Language supports three different types of loop.
These loop types are summarized here.

e While Loops
¢ Do/While Loops
¢ For Loops

The next three sections will introduce these loop types.

While Loops

The most common loop type in the Linden Scripting Language is the while loop. A
while statement looks very similar to an i £ statement. However, a while statement
will execute the block of code as long as the specified expression is txrue. If the specified
expression is not true, the while statement will not execute. It is important to note that
a while statement can execute zero times. If the expression specified in the while is not
true from the beginning, the while statement will not execute even once. The script
shown in Listing 3.2 demonstrates a while loop.

Chapter 3: Script Control

Listing 3.2: A While Loop

default
{
touch start (integer total number)
{
integer a = 1;
while(a<=10)
{
11Say (0, "Counting " + (string)a);
a++;
}
}

The variable a is defined to hold the number one. The while loop begins by ensuring
that a is less than or equal to ten. If a is less than or equal to ten, the loop will continue. The
value of a is displayed and a is incremented. The loop continues.

It is also easy to count backwards in a loop. Simply reverse a few things and the above
loop will count backwards. This can be seen in Listing 3.3.

Listing 3.3: A While Loop Counts Backwards

default
{
touch start (integer total number)
{
integer a = 10;
while(a>=1)
{
11Say (0, "Counting " + (string)a);
a--;
}
}

Notice how the above loop now initializes the variable to 10. The while loop now
checks to be sure that the variable is still greater than one. Finally, each time through the
loop, the variable is decremented, as opposed to incremented.

69

70

Introduction to Linden Scripting Language for Second Life

Do/While Loops

If the expression is £alse from the beginning, the while loop cannot be guaranteed
to execute. The do/while loop differs from the while loop in this very important way. The
do/while loop is guaranteed to execute at least once. This is because a while loop
makes its decision at the beginning of the loop. The do/whi 1 e loop makes this decision at
the end of the loop. This can be seen in Listing 3.4.

Listing 3.4: A Do/While Loop

default

{

touch start (integer total number)

{
integer a = 1;
do
{
11Say (0, "Counting " + (string)a);
a++;
} while(a<=10);
}

In the above script, the variable is initialized to one. The do/while loop begins and
displays the value of the variable. The variable is incremented. Next the while, at the end
of the loop, checks to see whether the variable is still less than or equal to ten. If the variable
is less than or equal to ten, the loop continues.

This loop performs the same task as the while loop in the previous section. You may be
wondering why it matters to make the decision at the end. Consider the following script that
illustrates this. Listing 3.5 illustrates this.

Listing 3.5: A Do/While Loop That Executes Once

default

{

touch start (integer total number)

{

integer a = 20;

do

{
11Say (0, "Counting " + (string)a);
a++;

} while(a<=10);

Chapter 3: Script Control

The above script sets the variable a to 20. This number is too high for the loop to use.
The while loop from the previous section would simply fail to execute and nothing would
be displayed. However, the above script is guaranteed to execute at least once. This would
cause the above loop to simply display one line, the value 20.

For Loops

The third loop type, the £or loop, can be very useful when you know the exact range
that is to be looped over. For a simple loop to count between one and ten, the £or loop is
the loop of choice. Consider the following loop which counts between one and ten. Listing 3.6
illustrates this.

Listing 3.6: A For Loop

default
{
touch start (integer total number)
{
integer a;
for(a = 1; a<=10; a++)
{
11Say (0, "Counting " + (string)a);
}
}

As can be seen from the above code, the for loop has three parts. The first part initial-
izes the variable to one. The second, or middle part, of the £or loop works like awhile
loop. As long as this expression is txrue, the loop will continue. The third, and final part of
the £or loop, is the action that should take place each iteration through the loop. For this
simple loop, the variable is simply incremented.

Summary

Loops and control statements allow you to control the execution flow of the script. The
if statements allow the script to make decisions and conditionally execute blocks of code.
The switch and case statements work similarly to i £ statements except that they allow
conditional execution based on a series of numeric values.

When a block of code should be executed repeatedly, a loop should be considered. The
Linden Scripting Language supports three loop types. The while loop will only execute if
the initial condition is true. A do/while loop will execute at least once. A £or loop ex-
ecutes over a defined set of numbers.

71

72 Introduction to Linden Scripting Language for Second Life

All Second Life scripts are state machines. State machines are a common programming
technique for organizing the execution of the program. The next chapter will explore state
machines.

Chapter 3: Script Control

73

74 Introduction to Linden Scripting Language for Second Life

Chapter 4: State Machines

CHAPTER 4: STATE MACHINES

e What is a state machine?

¢ State machines in Second Life

¢ Using state machines

¢ Programming with and without state machines

The concept of a state machine is not unique to Second Life. State machines are a com-
mon programming paradigm. However, no language makes the concept of a state machine
as integral as does the Linden Scripting Language. Most of the scripts in this book will be
implemented as state machines.

This chapter begins by introducing the concept of a state machine. State machines will
be introduced independent of Second Life. Next, this chapter will explain how Second Life
implements state machines. Finally, this chapter will conclude by showing how to implement
a script both with, and without, state machines.

What is a State Machine?

A state machine is a common way to represent a computer program. The computer pro-
gram contains a finite number of states. The program will proceed from one state to the next
through a series of actions. The program will begin in one specific state and may either even-
tually end, or continue running endlessly. Figure 4.1 shows a typical state engine.

75

76

Introduction to Linden Scripting Language for Second Life

Figure 4.1: A State Machine

1 1

0

The above figure represents a state machine. Each of the circles represents an individual
state. The arrows represent the actions that will take the script from one state to another.
State machines always start in the specified starting state, which is called the accept state.
The accept state is shown in Figure 4.1 as the state that is enclosed by a double line.

A state machine may end with some terminal state is reached. However, most Second
Life scripts will continue executing indefinitely.

Understanding Second Life State Machines

To see state machines in action, consider the default script, which is automatically
generated by Second Life, when a new script is created. This script is shown here.

default
{
state entry()
{
11Say (0, "Hello, Avatar!");
1

touch start(integer total number)

{

Chapter 4: State Machines 77

11Say (0, "Touched.");

This script starts with the word default. The word default specifies the name of
the state that the enclosed code belongs to. For this script there is only one state. This state,
which is named default, is the starting state for any script in Second Life.

Life With and Without State Machines

Many scripts are constructed entirely within their default state. This is often bad
design in Second Life. Consider the following script, which implements a simple switch that
can be turned on or off.

Listing 4.1: Programming without State Machines

integer value;

default
{
state entry()
{
value = TRUE;
}
touch_start (integer total_number)
{
if (value==TRUE)
{
118ay (0, "On") ;
value = FALSE;
}
else
{
1ll1say (0, "Off") ;
value = TRUE;
}
}

As can be seen, a global variable, named value, is set to either TRUE or FALSE. As
the user touches the object, the object will say either “On” or “Off”. As the object is touched
these values will alternate. Also, a note on global variables. Global variables are normally
considered bad programming practice. However in Second Life, there is really little choice as
to whether to use them or not. Because the Linden Scripting Language does not support user
defined classes, global variables are the primary way for a script to hold values long-term.

This same functionality could be created using a state machine. The following lines of
code do this.

78

Introduction to Linden Scripting Language for Second Life

Listing 4.2: Programming with State Machines

default

{

touch start (integer total number)

{

11Say(0,"on") ;

state off;
}
}
state off
{
touch start (integer total number)
{ 11Say (0, "Off");
state default;
}
}

The above code creates a second state, named of £. This gives the above script two
states: default and of £. Both states contain their own touch start event. Both
states also use the state command to switch to the opposite state when the object is
touched. To create an additional state use the state statement followed by the name of the
new state. This was done in the above script with the o £ £ state.

This script, like all scripts, begins in the defaul t state. To leave the default state
and enter another state, use the state statement. For example, the following command
will switch to the o £ £ state:

state off;

As can be seen in the above script, the state statementisusedinthe touch start
event to switch to the off state. Likewise, the touch start inthe of £ state switches the
state back to default.

Whenever a state is entered, the state entry eventis called. This allows the script
to setup for the new state. The above script does not make use of a state entry event.
However, state entry events could have been added for both the default andof £
states. The state entry eventforadefault stateis often used to setup the script, as
can be seen in the following script.

Listing 4.3: State events

default

{

state entry ()

{

Chapter 4: State Machines 79

11say (0,
"The script has entered the default state.");

}

touch_start (integer total_number)

{
}

state mystate;

}

state mystate

{

state entry ()

{
11say (0,
"The script has entered the mystate state.");

}

touch_start (integer total_number)

{
}

state default;

The above script will cycle through two states. When each state is entered, the
state_ entry event will be called. This could be used to setup any script variables need-
ed by the state. In this example, the state entry event simply displays the name of the
state that has been entered.

It is invalid to declare “state level” variables. For example, the following script segment
would be invalid.

state mystate

{

string stringForMyState;

state entry()

{
}

touch_start (integer total_number)

{
}

80

Introduction to Linden Scripting Language for Second Life

The above script segment is attempting to declare the variable st ringForMyState
inside of the state my state. This is not allowed. Such a variable should be declared at the
top of the script. This will cause the variable to be accessible from anywhere in the script. It
is not possible to create variables that are only accessible inside a particular state. Variables
are either accessible from the entire script, or they are accessible from inside of the function
that declared them.

If you are not used to using state engines it may seem unnatural to use them. It is not
required that your scripts make use of state engines. As explained earlier in this chapter it is
possible to create scripts without making use of state engines. However, the Linden Scripting
Language is optimized for state engines. Because of this, state engines should be used when
possible.

Summary

State machines are an inherent part of the Linden Scripting Language. A Second Life
script moves through a series of states as it executes. All scripts begin execution in the de-
fault state. As the script executes, it can move to other states by using the state command.

Strings allow the script to manipulate textual information. Strings have been used by
many of the programs demonstrated so far. The next chapter will take an in depth look at
strings. The functions used to parse and manipulate strings will be covered.

Chapter 4: State Machines

81

82 Introduction to Linden Scripting Language for Second Life

Chapter 5: String Handling

CHAPTER 5: STRING HANDLING

e Comparing strings

¢ Determining string set membership
¢ Parsing strings

¢ Reading notecards

Strings are sequences of characters. These strings usually come from a notecard, are
spoken by an avatar, or by the script itself. Declaring a string in the Linden Scripting Lan-
guage is very easy. The following lines of code create a string named my String that con-
tains the text “Hello World”.

string myString = "Hello World";

First, string comparison functions will be demonstrated. These functions will allow
the script to compare strings in a variety of ways. Finally, string parsing will be demon-
strated.

String Functions

The Linden Scripting Language offers several functions to perform core string op-
erations. While the list of s tring functions for the Linden Scripting Language is not exten-
sive, they do provide functions to perform all of the fundamental string operations. Table 5.1
summarizes the string functions offered by the Linden Scripting Language.

83

84 Introduction to Linden Scripting Language for Second Life

Table 5.1: Linden String Functions

Function Purpose

lIDeleteSubString removes a slice of a string.

[IDumpList2String turns a list into a string.

lIParseString2List turns a string into a list.

lIParseStringKeepNulls turns a string into a list, keep nulls.

[IGetSubString extracts a part of a string.

llinsertString inserts a string into a string.

lIToLower converts a string to lowercase.

[IToUpper converts a string to UPPERCASE.

[IStringTrim removes leading and/or trailing spaces.

[IStringLength gets the length of a string.

[ISubStringIndex finds the position of a string in another string.

lIEscapeURL returns the string that is the URL-escaped version of url.
(replacing spaces with %20, etc).

llUnescapeURL returns the string that is the URL unescaped version of url,

replacing "%20" with spaces, etc.

Many of these functions will be explained in this chapter.

String Comparison

The Linden Scripting Language makes it very easy to compare two strings. To compare
two strings, named stra and strb, the following code would normally be used:

if(stra == strb)
{

11Say (0,"”Equal.”) ;
1

While this method of string comparison is good for determining whether two strings
are exactly equal to each other, sometimes more advanced string comparison is called for. A
script might need to determine whether two strings are equal, and ignore the case. Addition-
ally, it might be necessary to determine which string would appear first in a dictionary.

Listing 5.1 meets these needs.

Listing 5.1: String Comparison

string CHARS = "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM-

NOPQRSTUVWXYZ [\]” “~abcdefghijklmnopgrstuvwxyz{|}~";

Chapter 5: String Handling

integer comparelen(string a, string b,integer len)

{

integer result = 0;
if(a != b)
{
integer index = 0;
do

{

string chara =
string charb =

integer posa =
integer posb =

if ((posa >= 0)

{

11GetSubString(a, index, index) ;
11GetSubString (b, index, index) ;

11SubStringIndex (CHARS ,chara) ;
11SubStringIndex (CHARS ,charb) ;

&& (posb >= 0))

result = posa - posb;

}

else if (posa >= 0)

{

result = 1;

}

else if (posb >= 0)

{

result = -1;

}

if (result != 0) index = len;

++index;

}

while (index < 1len) ;

}

return result;

}

7

integer compareNoCaselen(string a, string b, integer len)

{

string stra = llToLower (a) ;
string strb = 1llToLower (b) ;
return comparelen (stra,strb,len);

}

integer compare(string a,

string b)

85

86

Introduction to Linden Scripting Language for Second Life

integer lena = 1lStringLength(a) ;
integer lenb = 11StringLength(b) ;
integer result;
if (lena < lenb)

result = comparelen(a,b,lena);
else

result = comparelen(a,b,lenb);

return result;

integer compareNoCase (string a, string b)

{

}

integer 1la 11StringLength(a) ;
integer 1b = 1l1StringLength (b) ;
string stra 1l1ToLower (a) ;
string strb = 1llToLower (b) ;
integer result;

if(la < 1b)

result = compareNoCaselen(stra,strb,la);
else

result = compareNoCaselen(stra,strb,1b);

return result;

// Some test uses
default

{

state entry ()

{

11Say (0, "compareNoCase (hello,HELLO) :
(string) compareNoCase ("jeff","Jeff")

11Say (0, "compare (hello,HELLO): " +
(string) compare ("jeff","Jeff")

11Say (0, "compare(aaa,bbb): " +
(string) compare ("aaa", "bbb")) ;

11Say (0, "compare(aaa,bbb): " +

(string) compare ("bbb", "aaa"));

+

) i

Chapter 5: String Handling 87

This listing begins by defining a variable, named CHARS, that holds all of the characters
that can be compared. This variable, also defines the order that characters will be sorted in.
This variable is declared as follows:

string CHARS = "!\"#3%&' () *+,-./0123456789:; <=>?@ABCDEFGHIJKLM-
NOPQRSTUVWXYZ [\]” “~abcdefghijklmnopgrstuvwxyz{|}~";

«“)»

For example, if the character “!” were compared to “#”, the string comparison function
would report that “!” occurs first, and “#” second. This is because of the order of these two
characters in the above list.

Using the compareLen Function
To compare two strings, the compareLen function is provided.

integer comparelen(string a, string b, integer len)

{

The compareLen function accepts three parameters. The first two are the strings
to compare. The third parameter is the length of characters to compare. For example, if five
were specified as the 1 en variable, characters zero through four would be compared.

The compareLen function will return one of the following three values.

e Less than zero, string a is less than string b
e Zero, string a and string b are equal
e Greater than zero, string a is greater than string b

A variable, named result is created to hold the result of the comparison. If the
two strings are not equal, the program begins the process of determining which string
will occur first alphabetically.

integer result = 0;
if(a != b)
{
integer index = 0;
do

{

To determine which string occurs first alphabetically, a do/loop is used to loop
across all of the characters in the string.

string chara = 11GetSubString(a, index, index) ;
string charb = 11GetSubString(b, index, index) ;

The individual characters for each position are extracted from the strings.

integer posa = 1l1lSubStringIndex(CHARS ,chara) ;
integer posb = 11SubStringIndex (CHARS ,charb) ;

88 Introduction to Linden Scripting Language for Second Life

The position of each character is calculated. This numeric value allows the program to
determine the alphabetical order of the two characters.

Ifboth posa and posb are greater than zero, both characters were found in the CHARS
variable. If this is the case, the result will simply be the difference between them. If they
are equal, this will result in a value of zero. If they are not equal, result will hold a value
either greater or less than zero, depending on whether posa or posb was greater.

if ((posa >= 0) && (posb >= 0))

{
}

If character a was found, but not character b, return a value of one, which indicates that
string a is greater than string b.

result = posa - posb;

else if (posa >= 0)

{
}

If character b was found, but not character a, return a value of negative one, which indi-
cates that string b is greater than string a.

result = 1;

else if (posb >= 0)

{
result = -1;
!
If the two characters were equal, continue with the loop.
if (result != 0) index = len;
++index;

Continue looping until the end of the string is reached.

}

while (index < 1len) ;

}

return result;

Finally, return the result.

Understanding the compareNoCaseLen Function

Sometimes it is useful to compare two strings and ignore case. The

compareNoCaseLen function does this. The compareNoCaseLen function ac-

cepts three parameters. The first two are the strings to compare. The third parameter is the
length of characters to compare.

Chapter 5: String Handling 89

integer compareNoCaselen(string a, string b, integer len)

First, the two strings are converted to lower case.
string stra = 1llToLower (a) ;
string strb = 1llToLower (b) ;
return comparelen (stra,strb,len);

Finally, they are compared using the compareLen function discussed in the previous
section.

Understanding the compare Function

The two string functions presented so far allow a length to be specified. This can be very
useful if only the first part of the strings should be compared. However, usually the entire
string should be compared. The compare function will compare the entire string.

integer compare(string a, string b)

{

First, the length of each string is calculated.

integer lena 11StringLength(a) ;
integer lenb = 11StringLength(b) ;

The compareLen method is called to perform the actual comparison. The length of
the smallest string will be used in the comparison.

integer result;
if (lena < lenb)

result = comparelen(a,b,lena);
else

result = comparelen(a,b,lenb);

return result;

Finally, the result is returned.

Understanding the compareNoCase Function

The compareNoCase function works just like compareNoCaseLen, except
that no length is provided. The entire string will be compared.

integer compareNoCase (string a, string b)

{

First the length of each string is calculated.

90 Introduction to Linden Scripting Language for Second Life

integer la = llStringLength(a) ;
integer 1b = 11StringLength (b) ;

Next, the strings are converted into lowercase.

string stra 1l1ToLower (a) ;
string strb = 1llToLower (b) ;
integer result;

The compareLen method is called to perform the actual comparison. The length of
the smallest string will be used in the comparison.

if(la < 1b)

result = comparelen(stra,strb,la);
else

result = comparelen(stra,strb,1b);

return result;

Finally, the result is returned.

Comparing Strings

The script includes a simple state entry function that tests the functions present-
ed in this script.

default
{
state entry ()
{
11Say (0, "compareNoCase (hello,HELLO): " +
(string) compareNoCase ("jeff","Jeff"));
11Say (0, "compare (hello,HELLO): " +
(string) compare ("jeff","Jeff"));
11Say (0, "compare(aaa,bbb): " +
(string) compare ("aaa", "bbb")) ;
11Say (0, "compare(aaa,bbb): " +
(string) compare ("bbb", "aaa"));
}
}
The output from this script is shown here.
20:52 Object: compareNoCase (hello,HELLO): 0
20:52 Object: compare (hello,HELLO) : 31

]
]

20:52] Object: compare(aaa,bbb): -1
] Object: compare (aaa,bbb): 1

The above output demonstrates how the functions, created earlier in this chapter, can be
used.

Chapter 5: String Handling 91

Using Notecards

Notecards can be a handy way to store string based information for a script to use.
Notecards are an object type that can be embedded inside of any Second Life object. A note is
nothing more than a collection of text. Very similar to a text file stored on your hard drive.

Scripts can easily read from notecards that are stored in the same object as the script.
However, scripts cannot write to notecards. Notecards are very easy to modify. The owner of
an object can simply open the contents of a object that contains a notecard. Notecards must
be created in your inventory. To create a notecard open your inventory and select the note-
cards folder. You can right-click the notecards folder and select “New Notecard”. This will
create the notecard in your inventory, as seen in Figure 5.1.

Figure 5.1: Creating a Notecard

il Second Life

File Edit View World Tools Help (@) @@ En 6 PG)-Enc 6:42PMPST @& 1955177 RN B

; Ceate Sort
[RLIE) 2007-12-12 20:42:05 note c3
cent [tems
elp Island & (125, 125, 26)
» £ Lost And Found

-

Featiires: Textiire

HEWH 3 Travel Magazine Flyer
B Contents 3 Configure Balloon
3 PUBLISHING VILLAGE RENTAL INFORMATION
3 Super Computing 2007
 RC Cars Info
3 SL Fishing Readme
3 Travel Magazine Flyer
B Greeting: The Artwork of Kit Ums
3 5LExchange Terminal Instructions
3 Java FX Tools Chat

@ (&TEK L |

Communicate! Chat Snapshot Search™ (Build) @Mimi=Map Map € Inventory)
- - -

| = ' W second Life) 842 PMm

There are many notecards in my inventory, as seen in Figure 5.1. The new notecard is
named “New Note”. The notecard can now be drug to your object and renamed.

92

Introduction to Linden Scripting Language for Second Life

This notecard can be seen in Listing 5.2.
Listing 5.2: A Simple Notecard

Item 1:This is configuration item 1
Item 2:This is configuration item 2
Item 3:This is configuration item 3

The above notecard is a simple configuration file. There are three configuration items.
The first is named “Item 1”. The script, that will be presented to read this configuration file,
will look for each of these configuration and parse the data contained after the configuration
item.

A script can easily read notecards by using the appropriate Linden Scripting Language
functions. Listing 5.3 shows such a script.

Listing 5.3: Reading Notecards

integer index;

string notecardName;
key notecardQuery;
integer notecardIndex;
integer loaded = FALSE;

string iteml;
string item2;
string item3;

default
{
state entry()
{
if (loaded == FALSE)
{
notecardName = "Config";
state loading;
1
else
{
index = 0;
11Say (0, "Config data:");
11Say (0,"Item 1's value: " + iteml);
11Say (0,"Item 2's value: " + item2);
11Say (0,"Item 3's value: " + item3);
1
1

Chapter 5: String Handling

state loading

{

state entry()
11Say (0, "Loading configuration data...");
notecardIndex = 0;
notecardQuery = 1llGetNotecardLine (notecardName,
notecardIndex++) ;

dataserver (key query id, string data)

{
if (notecardQuery == query_ id)
{
// this is a line of our notecard
if (data == EOF)
{
11Say (0, "Config loaded...");
loaded = TRUE;
state default;

} else

{

integer i = 1lSubStringIndex(data, ":");
if(1!=-1)

{

string name = 11GetSubString(data,0,i-1);
string value = 11GetSubString(data,i+1l,-1);

if (name=="Item 1")

{
}

else if(name=="Item 2")

iteml = value;

item2 = value;
if (name=="Item 3")
item3 = value;

}

notecardQuery = 1llGetNotecardLine (notecardName,
notecardIndex++) ;

93

94

Introduction to Linden Scripting Language for Second Life
}

This script begins by defining several script level variables. These variables will be acces-
sible from any of the states that the script may find itself in.

integer index;

string notecardName;
key notecardQuery;
integer notecardIndex;
integer loaded = FALSE;

The notecardIndex variable holds the current notecard line being read. The
notecardName variable holdsthe name ofthe notecardtoread. ThenotecardQuery
variable holds the query being used to read the notecard. The 1loaded variable holds a
boolean to determine whether the notecard has been read yet.

Each of the configuration items will be stored in strings named iteml, item2 and
item3. These variables could be replaced with any configuration items that you are modi-
fying this script to be able to parse.

string iteml;
string item2;
string item3;

The notecard script, as do all scripts, begins in the defaul t state. The state begins by
checking the 1oaded variable. If the notecard has not yet been read, the script enters the
loading state.

default
{
state entry ()
{
if (loaded == FALSE)
{
notecardName = "Config";
state loading;
}
If the notecard has already been loaded, display the item data.
else
{
index = 0;
11Say (0, "Config data:") ;
11Say (0,"Item 1's value: " + iteml);
11Say (0, "Item 2's value: " + item2);
11Say (0,"Item 3's value: " + item3);

Chapter 5: String Handling 95

The loading state is where the notecard is actually read. First, the
notecardIndex variable is set to zero. This will begin reading the notecard at the first
line. Next 11GetNotecardLine is called to read the first line from the notecard. The
ll1GetNotecardLine doesnotreturnthelineimmediately. Ratherthedataserver
event will be called as soon as the line is read.

state loading

state entry()
11Say (0, "Loading configuration data...");
notecardIndex = 0;
notecardQuery = 1llGetNotecardLine (notecardName,notecardIn
dex++) ;

As the lines are read in from the notecard, the dataserver event is called. If the
query id matches our notecard query established earlier, this is a line that should be
processed.

dataserver (key query id, string data)

{

if (notecardQuery == query_ id)

{

If this line is from our query, check to see whether it is an end-of-file (EOF). If the file has
ended, set the 1loaded variable to TRUE and return to the default state.

// this is a line of our notecard
if (data == EOF)
{
11Say (0, "Config loaded...");
loaded = TRUE;
state default;

} else

{

If the line is part of the notecard, and not an end-of-file, we must determine which con-
figuration item was just read. Configuration items begin with the name of the item, followed
by a colon. The first step is to find the location of the colon. The following line of code does
this.

integer i = 1lSubStringIndex(data, ":");

96

Introduction to Linden Scripting Language for Second Life

The variable i now contains the location of the first colon encountered. If no colon was
encountered then the value -1 is returned.

if(11=-1)

{

The name of the configuration item comes just before the colon. The name is then ex-
tracted into the name variable. The name occurs between position zero and one minus the
position that ht colon was found at.

string name = 11GetSubString(data,0,1i-1);

The value occurs to the right of the colon. The value is extracted by obtaining all char-
acters from one plus the colon to the end of the string. The value of -1 can be passed to
11GetSubString to obtain the end of the string.

string value = 11GetSubString(data,i+1l,-1);

Now that both the name and value have been obtained it is time to see which configura-
tion item was specified. The next few lines determine which configuration item was specified
and copy the value to the appropriate script variable.

if (name=="Item 1")

{
iteml = value;

1

else if(name=="Item 2")
item2 = value;

if (name=="Item 3")
item3 = value;

}

Next, the next line of the notecard is read.

notecardQuery = 1llGetNotecardLine (notecardName,

notecardIndex++) ;
!
!
!
!
This process will continue until all lines have been read from the notecard.
Summary

A stringisaset of characters. Strings are usually received from other avatars or note-
cards. Strings are how the Linden Scripting Language represents text. The Linden Scripting
Language provides many built in functions to handle strings.

Chapter 5: String Handling 97

Strings can be read from notecards. A notecard is essentially a file that is attached to an
object. Notecards are commonly used to hold configuration information for scripts. Strings
read in from notecards are usually parsed to obtain the configuration information.

So far our scripts have performed basic communication. These scripts “say” things to the
world around then. Scripts can also listen and send instant messages, as well as other forms
of communication. Communication will be covered in the next chapter.

o8 Introduction to Linden Scripting Language for Second Life

Chapter 6: Communication

CHAPTER 6: COMMUNICATION

¢ Speaking, Whispering and Shouting
¢ Region-wide Communicate

¢ Using Dialogs

¢ Instant Messages

¢ Linked Messages

There are many ways to communicate in Second Life. Objects can communicate with
avatars in many of the same ways that avatars communicate with each other. Objects can also
use special communications channels to communicate with each other. Additionally, dialogs
can be presented to users to allow them to pick from several options.

Instant messages (IM) are another common way for avatars to communicate with each
other. Objects can also communicate via instant message. An object can send an instant mes-
sage to an avatar. However, it is currently impossible, in the Linden Scripting Language, to
send an instant message from an object. This includes both IMs from other objects, as well
as IMs from avatars.

This chapter will explain how objects can communicate. It will explain both communica-
tion between objects and avatars, as well as communication between objects.

Speaking and Listening

Spoken communication in Second Life occurs over channels. When avatars converse
with each other, they are communicating on channel 0. Anything that is said on channel 0
near an avatar will be displayed to the screen. Figure 6.1 shows an avatar hearing communi-
cation around him.

99

100

Introduction to Linden Scripting Language for Second Life

Figure 6.1: Conversation on Channel 0

W Second Life =T X
File Edit View World Tools G)-Publi 6:58 PMPST & L [seach []

Russ Boyd: hi Encog!
You: Hi Russ!

@ (@ 'Eler]
Communicate m Fliy Snapshot "Search Bild Mimi=Mapt ™ ¢ Map « Inventory
’#? EE A | & secondLlie FECEIO I eseem

Messages on other channels are not displayed to avatars. These other channels are
reserved for objects and there is no easy way for an avatar to listen on one of these channels.
However, avatars can easily talk on other channels. By prefixing what the avatar is saying
with a slash, and then a number, the avatar can speak on other channels. For example, the
following would say “Hello” on channel 1.

/1Hello

Many objects use this as a means of receiving commands from the object's owner. The
object could have just as easily accepted a command on channel 0; however, by accepting it
over channel 1, the command will not be broadcast to other nearby avatars.

Objects in Second Life can communicate in many of the same ways that avatars commu-
nicate. Objects can listen to conversations going on around them. Objects can also speak
and participate in those conversations. Objects can also send instant messages to avatars.
However, instant messages between an avatar and an object are one-way. An avatar cannot
send an instant message back to an object.

Chapter 6: Communication 101

The following script demonstrates how an object can listen to conversations going on
around it. The object will wait for someone to say either “hello” or “goodbye”. Once the
object detects either of these words, the object says an appropriate greeting to the avatar that
spoke to the object. This can be seen in Listing 6.1.

Listing 6.1: Say Hello

integer CHANNEL = O0;

default
{
state entry()
{
llListen (CHANNEL, "", NULL KEY, "");
}

listen (integer channel, string name, key id,
string message)

{
if (1lToLower (message) == "hello")
{
11Say (CHANNEL, "Hello " + name) ;
}
else if(1llToLower (message) == "goodbye")
{
11Say (CHANNEL, "Goodbye " + name) ;
}
}

For an object to begin listening, the object must call the 11Listen function. This
function specifies what channel the object would like to listen on. The above script calls the
llListen function in the state entry event handler. The script specifies that it
would like to listen to the channel specified by the CHANNEL variable. The Linden Script-
ing Language does not have user defined constants. As a result, the above declaration of
CHANNEL is as close as we can come to a constant.

Channel zero is the normal conversation channel in Second Life. All communication
between avatars is on channel zero. Therefore, by requesting to listen on channel zero, the
object will be notified anytime something is said near to the object.

The above script contains a 1isten event handler. This event handler is called each
time something is said near the object. The object checks for either “hello” or “goodbye”.
Because the strings are converted to lower case, the user could also enter “Hello” or any mix-
ture of upper and lower case characters. The script responds with a greeting directed to the
avatar's name. The avatar's name was passed in as a parameter named name.

102

Introduction to Linden Scripting Language for Second Life

The 11Say function is used when a script wants to say something. The above calls to
11Say use channel zero. However, objects will often want to communicate with each other,
and not allow nearby avatars to listen in. To do this, the script should specify a channel other
than zero. Many recipes in this book will communicate on channels other than zero.

In addition to 11 Say, there are two other functions that allow a script to talk. The only
difference between the three communication functions is the distance they cover. Table 6.1
summarizes the communication functions.

Table 6.1: Communication Distances

Communication Function Distance
[IWhisper 10m
lISay 20m
[IShout 100m

There is also a fourth communication function, that has unlimited range. The
llInstantMessage function allows an instant message to be sent to the specified ava-
tar. This can be seen in Listing 6.2.

Listing 6.2: Instant Message

default

{

touch start (integer total num)
{
// get the key of the objects owner.
key owner=11GetOwner () ;
llInstantMessage (owner, 11Key2Name (owner) +", "
+ (string)total num +" Avatar(s) touched me!");

The above script will send a message to the object's owner every time the ob-
ject is touched. It is also possible to send a message to the object's owner by using the
l110wnerSay function. However, 110wnerSay does not have the unlimited distance
ofallInstantMessage function call.

It is also possible to communicate to the entire region. The command 11RegionSay
will send a message to objects across the entire region. The 1L1RegionSay function can-
not be used on channel 0. Therefore, L1RegionSay is only useful for communications
between objects.

Chapter 6: Communication 103

Understanding Dialogs
The Linden Scripting Language allows much more direct interaction with avatars than

simple touch events. It is also possible to create a dialog. A Second Life dialog can be seen
in Figure 6.2.

Figure 6.2: Second Life Dialogs

W Second Life - C=1a

7 R

blie

Ignore

P @D | o]

¥ Estires L 4
icate Ely Snapshot Search Biiild Miri=Map | Inventony
[=] 2 W Second Life X4 B o16 PM

The dialog allows the user to select a color. This script used to do this can be seen in
Listing 6.3.

Listing 6.3: A Second Life Dialog

integer CHANNEL = 10;

default

{

state entry()

{
}

1lListen (CHANNEL, "", NULL_KEY, "");

104 Introduction to Linden Scripting Language for Second Life

touch_start (integer total_ num)

{
list 1 = ["red","green", "blue"];
key who = 1llDetectedKey (0) ;
l1Dialog(who, "Where to?", 1, CHANNEL) ;
}

listen (integer channel, string name, key id,
string message)

{
if(1lToLower (message) == "red")
{
ll1SetColor (<255,0,0>,ALL SIDES) ;
}
else if(llToLower (message) == "green")
{
ll1SetColor (<0,255,0>,ALL SIDES) ;
}
else 1if(llToLower (message) == "blue")
{
l1SetColor(<0,0,255>,ALL SIDES) ;
}
}

This script is very similar to the script presented in the last section. There are two main
differences. First, this script makes use of channel 10, rather than channel zero. The second
difference is that this script makes use of a dialog.

The dialog is used at the end of the touch start event handler. Calling the
11Dialog function creates a dialog. The dialog will display buttons that correspond to
the 1ist that was passed into the 11Dialog function.

Once the user selects one of the options from the dialog, the name of that button is “said”
over the specified channel. This causes the user's choice to be picked up by the 1isten
event handler. In this way, implementing a dialog is very similar to implementing a script that
listens to user conversation.

Instant Messages

Objects can send instant messages directly to an avatar. It is currently impossible for ob-
jects to receive instant messages, either from avatars or other objects. Instant messages are
sent using the 11 InstantMessage function. However, there is a shortcut for sending
an instant message to the owner of an object. To send an instant message to the owner of an
object, the 110wnerSay function should be used.

Chapter 6: Communication 105

However, to send an instant message to someone other than the owner, the
llInstantMessage function must be used. Listing 6.4 shows a simple pager that
uses l11InstantMessage.

Listing 6.4: A Simple Pager

nn.,
2

string name =
string last online = "";
key nameKey = NULL KEY;

default
{
on_rez(integer p)
{
l1lResetScript () ;
}

state entry()

{
}

touch start (integer total number)

{

11SetText ("Online Detector\nTouch to Claim",<1,1,1>,1);

if (name == "")
{
nameKey = llDetectedKey(0) ;
name = llDetectedName (0) ;
l1SetText (name + "\Touch to page:\n" +
name,<1,1,1>,1);

}
else if (11DetectedName (0) != name)
{
llInstantMessage (nameKey, llDetectedName (0) +
" is paging you from " + 1llGetRegionName ()) ;
1lWhisper (0, "A message has been sent to " + name) ;
}

The script begins by defining several script level variables. Specifically, the name and the
key for the user, who has claimed the pager, are stored. A key is a number that represents
an object or avatar in Second Life. The key will be obtained when an avatar touches the
pager. The first avatar to touch the pager claims that pager and will be sent instant messages

when others touch it.

nmn .,
I

string name =

106 Introduction to Linden Scripting Language for Second Life

key nameKey = NULL KEY;
This script has one single state, the default state, that all scripts have.

default

{

Because the object is claimed, it should be reset whenever it is rezzed back to the world.
Thus, if an avatar who has claimed this object gives the object to a second avatar, the object
will go unclaimed as soon as it is moved back to the world from the user's inventory.

on_rez(integer p)

{
}

When the object first starts up, text is displayed above the object instructing avatars to
touch the object to claim it.

11ResetScript () ;

state entry()

{
}

If an avatar touches the pager, then either that avatar is going to send a message or claim
the pager. If no one has claimed the pager yet, the touching avatar claims it. If it is to be
claimed then use 11DetectedKey and 11DetectedName to obtain the name of the
avatar who has claimed the pager. These functions return the name and key of the avatar
that touched the object.

11SetText ("Online Detector\nTouch to Claim",<1,1,1>,1);

touch_start (integer total_number)
if (name == "")
nameKey = llDetectedKey (0) ;
name = llDetectedName (0) ;
l11SetText (name + "\Touch to page:\n"
+ name,<1,1,1>,1);

}

If the pager was already claimed, send a message to the pager's owner to tell them that
they were paged. Also include the region name where the pager was located.

else if (11DetectedName (0) != name)

{
llInstantMessage (nameKey, llDetectedName (0)
+ " is paging you from " + llGetRegionName()) ;
11Whisper (0, "A message has been sent to " + name) ;

Chapter 6: Communication

It is possible for two avatars to touch the object at exactly the same instant. This is a rare
occurrence and most scripts in Second Life do not supportit. If two avatars did touch the object
at exactly the same instance, the total number parameter to the touch event would
be greater than one. To support this, L1DetectedName and 11InstantMessage
functions both accept a parameter to specify which avatar should be detected. The script
above only supports one avatar touching the script at once, so a zero is passed in.

Supporting more than one avatar is relatively easy. Loop up to the number speci-
fied by total number and process each avatar by calling a function such as
llDetectedName for each. Of course, this does not always make sense for a script.
The above script can only be claimed by one avatar at once. As a result, concurrent touches
are not supported.

Setting Prim Text

Every prim has text associated with it. For most prims this text is an empty string (7).
However, by using the 11SetText function call, text can be assigned to a prim. This text
will be displayed just above the prim, as seen in Figure 6.3.

Figure 6.3: Prim Text

W Second Life
File Edit View World Tools Help @
.

E .3 P (@l L |
ristorys, I hout | Gestires v
Communicate (T\ Fliy Snapshot Search Biild Mimi=Map Inventony
Fe) SR £ | ¥ secondlie | 4EIS G ssem

107

108

Introduction to Linden Scripting Language for Second Life

The 11SetText function has the following signature.
11SetText (string text, vector color, float alpha)

The first parameter, named text, specifies the text to be displayed. The second param-
eter, named color, specifies the color that the text is to be displayed in. Colors in Second
Life are implemented using the vectoxr data type. Colors are made up of red, green and
blue components. These are mapped to the x, y and z-coordinates of the vector. The final pa-
rameter, named alpha, specifies the transparency of the text. A value of zero is completely
transparent, whereas a value of one is completely solid.

Once a call to 11 SetText has been placed, the text will remain until it is cleared. To
clear text the following function call is used.

ll1SetText ("",<0,0,0>,0) ;
The following function call would display “Hello” in bright red.
11SetText ("Hello.", <1,0,0>, 1.0);

The text property of a primitive provides a quick means to communicate textual informa-
tion to all avatars around the prim.

Linked Messages

Second Life objects are made of a series of linked prims. These linked prims will move
as one single object. The most important of the linked prims is the root prim. The root prim
is the last prim that was linked to the object. Additionally, the root prim is the prim that
translates its movement and rotation to the rest of the object. The root prim can be thought
of as the “handle” by which the rest of the object is moved and rotated. The main script for
an object is almost always located in the root prim.

Sometimes the linked prims in an object will need to communicate with each other. While
these objects could certainly use 11Say and 1isten events, this would not be the most
efficient way to program this. Using 11Say would broadcast the message well beyond the
object that needs the communication. This would be very inefficient and would consume
entirely too much processing time from the regional server. The best way to communicate
among linked prims is to use linked messages.

A simple linked object is shown in Figure 6.4.

Chapter 6: Communication 109

Figure 6.4: A Simple Linked Object

\'_'l_@f Second Life L= ;_FZTIL LS

File Edit View World Tools Help &) @@ Enc c 720PmpsT & 1355177 [EEROTRE

~-\\

Encog’s

| ¢ D @@ (@)l i)]
oy I t | Gestires v
Communicate (T Fliy Snapshot Search Blild Mini=Map p Inventony
’:‘3 B &2 | % Scondli f FE A EO F ooem

The above object contains two buttons, a red one and a green one. The cube at the top
of the object changes colors depending on which button is clicked. When the buttons are
touched, they send a message to the cube at the top. The green button's script is very short,
and contains only a touch event. The green button's script can be seen in Listing 6.5.

Listing 6.5: The Green Button

default
{
touch start (integer total number)
{
l1MessageLinked (LINK ROOT , 0, "Green", NULL KEY);
}

The red button is very similar to the green button. The red button can be seen in Listing
6.6.

110

Introduction to Linden Scripting Language for Second Life

Listing 6.6: The Red Button

default
{
touch start (integer total number)
{
l1MessageLinked (LINK ROOT , 0, "Red", NULL _KEY) ;
}

You will notice that the first parameter specifies which prims to send the message to.
The value of LINK ROOT sends the message to the root prim. There are several other
options, as seen in Table 6.2.

Table 6.2: Message Target Types

Type Purpose

LINK_ROOT Send a message to the root prim.

LINK_SET Send a message to all prims.

LINK_ALL_OTHERS Send a message to all prims, except the one that contains
this script.

LINK_ALL_CHILDREN Send a message to all non-root prims.

LINK_THIS Send a message to the prim that contains the script.

The remaining three parameters to the 11MessageLinked function are sent on
to the prims that receive the message. They can be used however you like. They allow an
integer,astring and a key to all be sent to the receiving prim.

The root prim for this object is the box at the top that changes colors as the buttons are
pressed. The script for the root prim is shown in Listing 6.7.
Listing 6.7: The Root Prim that Receives the Messages

default

{

id)

link message (integer sender num, integer num, string str, key

{

11Say (0, "Message from " + (string) sender num);
if (str=="Red")

{
}

else if(str=="Green")

ll1SetColor(<1,0,0>,ALL SIDES) ;

Chapter 6: Communication

1l1SetColor(<0,1,0>,ALL SIDES) ;

As you can see a 1ink message event handler is implemented. It receives mes-
sages from the two buttons. Depending on which button is pressed, the color of the cube is
changed.

Summary

There are a variety of communication types that can be used in Second Life. Scripts can
communicate both with other scripts and with avatars around them. Scripts can communi-
cate on channel zero. Channel zero is the general chat channel that avatars use to converse.
Scripts can both speak and listen on channel zero.

Scripts can also communicate on channels other than zero. This works the same as
channel zero, except that avatars around the script will not be able to hear the conversation.
Scripts can also send instant messages to avatars; however, a script may not receive instant
messages.

Second Life objects are a collection of linked prims. Each of these linked prims can
contain a script. These scripts can communicate with linked messages. A linked message is
used to communicate between prims that are linked together.

Up to this point you have seen many examples of events. Events are special functions
that are called by Second Life when something happens. The next chapter will focus on
events and demonstrate many of their uses.

111

112 Introduction to Linden Scripting Language for Second Life

Chapter 7: Events

CHAPTER 7: EVENTS

¢ Timer Events
¢ Collision Events
¢ Sensor Events
¢ Money Events
¢ Using Dialogs

Events are very important to Second Life programming. Events have been used in many
of the examples in previous chapters. This chapter will focus on some of the remaining event
types that were not covered in previous chapters.

Events are functions, with a special name. The name of the event function defines the
type of event that is to be handled. The event function will be called whenever that event
occurs. This allows the script to respond to that event. So far we have seen touch and listen
events. These events allow the script to hear messages around it and also detect when the
object is touched. However, there are many other event types. In this chapter you will see
how events can provide the following information:

¢ when a certain amount of time elapses

¢ when something collides with the object
¢ when other avatars are near the object

¢ when avatars pay money

Timer events will be discussed in the next section.

Timer Events

Perhaps the simplest kind of event is the t imer event. Timer events happen periodi-
cally, according to the interval specified by a call to 1L1SetTimerEvent. This can be
seen in Listing 7.1.

Listing 7.1: Timer Events

default
{
state entry()
{
llSetTimerEvent (10) ;
}
timer ()

{

113

114

Introduction to Linden Scripting Language for Second Life

11Say (0, "Timer") ;

As can be seen above, timer is started in the state entry event with a call to
l1SetTimerEvent. Once 11SetTimerEvent hasbeen called, the timer event
will then be called at the interval specified by the 11SetTimerEvent call. To disable
the timer, call 11 SetTimerEvent with a value of zero.

Timers are very common in Second Life programming. Timers can be used anytime that
it is necessary for a script to perform a repetitive task.

Collision Events

Collision events allow the script to determine when the object has collided with another
object or the ground. There are three events that track collisions are named as follows.

e collision
¢ collision_end
e collision_start

The collision start eventis called when something first collides with the ob-
ject. This could be an object or another avatar. Collisions with the ground are handled with
the land collision setof events that will be discussed next. All of the object collision
events share a common signature.

collision(integer num detected){ ; }
collision end(integer num detected){ ; }
collision start(integer num detected){ ; }

When a collision is first detected, the collision start event is sent. Next
collision events are sent while the collision continues. Finallyacollision end
event is sent when the collision stops.

The land collision functions work similarly. The three land collision events are listed
here.

¢ Jand_collision
¢ land_collision_end
¢ Jand_collision_start

As you can see, the land collision events parallel the object collision events. However,
there are differences. Land collisions do not involve multiple objects. The function signa-
tures reflect that. The land collision events all share a similar signature. These signatures
are shown here.

land collision(vector pos){ ; }
land collision start(vector pos){ ; }
land collision end(vector pos){ ; }

Chapter 7: Events

When a collision with the land is first detected, the land collision start
event is sent. Next land collision events are sent while the collision continues. Fi-
nally, aland collision end eventis sent when the collision stops. Land collisions
are only useful for physical objects. Physical objects are discussed in Chapter 10. Objects in
Second Life are either physical or non-physical. A physical object can be moved by external
forces, and will fall with gravity.

Listing 7.2 shows a simple collision script that shows how collisions work.

Listing 7.2: Working with Collisions

default
{
collision(integer total number)
{
integer 1i;
for(i=0;i<total number;i++)
{
11Say (0, "Collision: " + llDetectedName (i));
1
1
collision start (integer total number)
{
integer 1i;
for(i=0;i<total number;i++)
{
11Say (0, "Collision Start: " + llDetectedName (i)) ;
1
1
collision_end(integer total number)
{
integer 1i;
for(i=0;i<total number;i++)
{
11Say (0, "Collision End: " + llDetectedName (i));
1
1

Use your avatar to collide with the object. You will see which events are called. You
will also notice that each of the events uses a for loop. This is because one event may re-
port multiple avatars at once. It is somewhat rare that two avatars would be reported on
exactly the same event. Because of this, many scripts just pass a zero into functions like
llDetectedName. For example, the collision end event could have been writ-
ten as follows.

115

116

Introduction to Linden Scripting Language for Second Life

collision end(integer total_ number)

{

11Say (0, "Collision End: " + llDetectedName (0)) ;

}

Unless a large number of avatars were colliding with the object simultaneously, the above
code would work just fine.

It is also possible to detect collisions on a phantom object. A phantom object allows an
avatar to pass through the object. Water is a very common example of a phantom object. To
create your own water, simply use a water texture on a phantom object. You may have no-
ticed that some water in Second Life causes a splash noise when an avatar jumps in. This can
be done with collisions. However, you should call 1L1VolumeDetect (TRUE) when
dealing with a phantom object. Listing 7.3 shows a simple script that plays a splash sound for
phantom water.

Listing 7.3: A Water Splash

default

{

state entry() {
11VolumeDetect (TRUE) ;

}
collision_ start(integer num detected)
{
11TriggerSound ("splash", 1);
}

Any event that accepts a num detected parameter can use the avatar and group
detection functions, such as 11DetectedName. You can also get the key of the avatar
by using 11DetectedKey. These functions will be covered in greater detail later in this
section when object security is discussed.

Sensor Events

Sensors are another common type of event in Second Life. A sensor allows the object to
know what avatars and other objects are around them. Sensors are notorious for their poor
performance, so use them sparingly. Too many sensors in a Second Life region degrade
overall performance.

Sensors are used for many different purposes in Second Life. Avatar radars can show
which avatars are around. Notecard givers will sense avatars and hand out notecards. Sen-
sor doors will open as an avatar approaches.

Chapter 7: Events

To use a sensor, the 11SensorRepeat function should be called. The signature of
the 11SensorRepeat function is as follows.

ll1SensorRepeat (string name, key id, integer type, float range,
float arc, float rate);

The name specifies the name of the object or avatar to scan for. The key specifies the
key of the object or avatar to scan for. The type parameter specifies the type of object to
scan for. Specify AGENT to scan for avatars. Use ACTIVE to scan for moving objects or
PASSIVE to scan for non-moving objects. One scanner can scan for multiple types, simply
use the or (]) operator to scan. For example, to scan for both avatars and moving objects, use
AGENT | ACTIVE. The range parameter specifies how far away to scan for. The arc
parameter specifies how many degrees to scan over. This value is in radians, so specifying
PI will scan all around. Finally, the rate parameter specifies how frequently to scan.

The following shows how to call L1 SensorRepeat to scan for avatars. It will scan
from all directions up to 20 meters away. It will scan once a second.
ll1SensorRepeat ("", "",AGENT, 20, PI, 1);

A notecard giver is a script that will hand out notecards to avatars that approach it. Note-
card givers are a common use of scanners. Listing 7.4 shows a notecard giver.

Listing 7.4: Notecard Giver

string notecard = "Welcome Notecard";
integer freq = 1;
integer maxList = 100;

list given;

default
{
state entry()
{
llSensorRepeat ("", "",AGENT, 20, PI, freq);
11SetText ("", <1.0, 1.0, 1.0>, 1.0);
1

sensor (integer num detected)

{

integer 1i;
key detected;

for (i=0;i<num detected;i++)
{

detected = llDetectedKey (1) ;

if(llListFindList (given, [detected]) < 0)

117

118 Introduction to Linden Scripting Language for Second Life

{

given += llDetectedKey (i) ;

l1GiveInventory(detected, notecard) ;
if (llGetListLength(given) >= maxList)

{
}

given = 1llDeleteSublList (given,0,10);

The sensor event is called at the interval specified by the frequency. In this case, the
sensor event is called once a second. The sensor event begins by looping over all the avatars
detected.

for (i=0;i<num detected;i++)

{

detected = llDetectedKey (i) ;

Once the key for the detected avatar is found, it is checked against the list of already
found avatars. It is annoying for the notecard giver to keep handing out notecards to the
same avatar. So the list tracks the last 10 avatars that it has given a card to.

if (11ListFindList (given, [detected]) < 0)

{

If the avatar has not had a card given to them, then add the avatar's key to the list.
given += llDetectedKey (i) ;

Give an item to the detected user. The 11GiveInventory function will give an
item from the object's inventory. The object inventory is the same place that the script was
created, which is the contents tab for the object. Simply drag an object to the content and it
will be added to the object's inventory. You will now see the object, along with the script, in
the content pane of the object properties.

l1GiveInventory (detected, notecard) ;
If there are more items than the maxList, remove the oldest item.

if (llGetListLength(given) >= maxList)

{
}

given = llDeleteSubList (given, 0,maxList) ;

The above script uses lists to track the avatars it has already passed out a notecard to.
Lists are very useful for keeping data such as this. Lists will be covered in greater detail in
Chapter 8.

Chapter 7: Events 119

Money Events

If a money event is present in a script, the user has the option to right-click the object and
choose to pay that object. The money event has the following signature.

money (key giver, integer amount)

The giver parameter specifies the key of the avatar that gave money. The amount param-
eter specifies the amount that was given. Tip jars are a common example of scripts that use
money events. A simple tip jar is shown in Listing 7.5.

Listing 7.5: Tip Jar

integer CHANNEL = 55;
integer total;

updateText ()
{
string str = 1llKey2Name (11GetOwner()) + "'s Tip Jar\n";
if(total>0)
str+= (string)total + " donated so far.";
else

str+= "Empty";

11SetText (str, <0,1,0>, 1);

}
default
{
on rez(integer s)
{
11ResetScript () ;
}
state entry()
{
updateText () ;
llListen (CHANNEL, "", 11lGetOwner (), "");
}

money (key giver, integer amount)
11Say (0, "Thanks for the " +
+ llKey2Name (giver)) ;
total+=amount;
updateText () ;

{
(

string)amount + "L$, "

}

touch start (integer count)

120 Introduction to Linden Scripting Language for Second Life

{
if (11DetectedKey (0)==11GetOwner ())
{
11Dialog(llDetectedKey(0),
"Clear total amount?", ["Yes","No"], CHANNEL) ;
}
}
listen (integer channel, string name, key id, string message)
{
if (message=="Yes" && id==11GetOwner ())
{
total = 0;
updateText () ;
}
}

The above tip jar will accept tips and keep a running total of how many times it has re-
ceived. If the owner touches the tip jar, the owner will be asked whether they would like to
reset the total on the tip jar.

The money event begins by thanking the avatar that gave the tip.

11Say (0, "Thanks for the " + (string)amount + "L$, " +
11Key2Name (giver)) ;

Next the total is updated and the updateText function is called to update the total.

total+=amount;
updateText () ;

TheupdateText function, as seen above, is a simple function thatuses 11 Set Text
to change the object's text. Changing an object's text was covered in Chapter 6.

When the user selects to pay an object, a small payment dialog is shown. This dialog
lists four predefined payment amounts, and may allow the user to enter their own payment
amount. This dialog is shown in Figure 7.1.

Chapter 7: Events

Figure 7.1: A Payment Dialog

W Second Life = e

=T X
File Edit View World Tools Help @ fa 194, c) Enco 7:24PMPST @ 955,177 [EEGEENE

@ &Rk LT A

oAl Click here to chat, Shout GEstures -
Gommunicate! Chat « Snapshot Search Bild Mini=Map Wap « Inventony
A8 EE £ | ¥ secondlife FLIAEC F0 saem

The appearance and function of this dialog can be changed. This is done using the
l1SetPayPrice function call. The signature for 11 SetPayPrice is shown here.

l1SetPayPrice (default, [price 1, price 2, price 3, price 4]);

The default is the default price. This is also where the user enters their own price.
The other parameters specify the other four preset prices. To disable any of these, specify
PAY HIDE. For example, the following call to 11SetPayPrice allows only 100 lin-
dens to be entered.

l1SetPayPrice (PAY HIDE, [100, PAY HIDE, PAY HIDE, PAY HIDE]) ;
Because PAY HIDE was specified for the default price, the use is not allowed to enter

their own price. Only the price of 100 is allowed.

It is also possible to have a script pay avatars. However, before a script can pay from the
owner's money, permission must be obtained. This is covered in the next section.

121

122

Introduction to Linden Scripting Language for Second Life

Handling Permissions

It is also possible for a script to give money. However, giving money requires special
permission. When a script that needs to take money from you is run, a special permission

dialog is displayed. This dialog can be seen in Figure 7.2.

Figure 7.2: Money Dialog

El_ﬂf Second Life — X

Fle Eit View World Tools Help @) D : G) - S ; 5

An object wants permission to take Linden dollars
(L) from your account.

L

‘Camping Bench', an object owned by ‘Encog
Dod', would like to:

Take Linden dollars (L$) from you
If you do not trust this object and its creator,
you should deny the request. For additional

information, click the Details button.

Grant this request?

(e=TIT

= Camp
Camp £

- — ‘-’-\. e -
S (& Talk | ‘l

Gestiires b4

Biiild Miri=Map Map Inventory

@) 026 PM

This will be used to make a simple guessing game. This game can be seen in Listing

7.6.
Listing 7.6: Guessing Game

integer answer;
integer INTERVAL = 10;
integer PRIZE = 1;

askQuestion()

{
integer addl (integer)llFrand (11) ;
integer add2 = (integer)llFrand(11) ;
answer = addl+add2;

Chapter 7: Events 123

11Say (0, "Would you like to win "+ (string)PRIZE
+" Linden Dollar(s)?");

11Say (0, "Answer this question. What is " + (string)addl + "
+" + (string)add2) ;

}

default

{
state entry()

{
}

on_rez(integer s)

{
}

l11RequestPermissions (11GetOwner (), PERMISSION DEBIT) ;

11ResetScript () ;

run_time permissions (integer perm)

{

if (perm & PERMISSION DEBIT)

{
}

state ready;

}

state ready

{

state entry ()

{

11SetTimerEvent (INTERVAL*60) ;
llListen(0, "", NULL KEY, "") ;
askQuestion () ;

}

listen(integer channel, string name, key id, string message)

{

integer num = (integer)message;
if (answer!=-1 && num>0 && (num==answer))

11Say (0, "Congratulations " + name
+ " you win the prize.");

11Say (0, "Next question in " + (string) INTERVAL
+ " minutes.");

124

Introduction to Linden Scripting Language for Second Life

answer = -1;
11GiveMoney (id, PRIZE) ;

}

touch (integer detected)

{

if (11DetectedKey (0)==11GetOwner ())

{
askQuestion() ;
1
1
timer ()
{
askQuestion() ;
1

The above script begins by requesting permission to take money. The following line
does this.

11RequestPermissions (11GetOwner (), PERMISSION DEBIT) ;

The user's response will be relayed to the run time permission event. The
signature of this event is as follows.

run_time permissions (integer perm)

If the user gives permission to debit the account, the script then moves on to the ready
state.

if (perm & PERMISSION DEBIT)

{
}

state ready;

To actually pay the user, the 11GiveMoney function is used. The following line of
code does this.

11GiveMoney (id, PRIZE) ;
The above script uses this line to give a user money for answering its simple question

correctly.

The above script implements a simple function, named askQuestion that formu-
lates a simple addition problem. Two random numbers are chosen. The user is then asked
what the answer is.

Chapter 7: Events
integer addl = (integer)llFrand(11) ;
integer add2 = (integer)llFrand(11) ;

answer = addl+add2;

The 11Frand function creates a floating point number between 0 and one short of the
number specified. This number is converted into an integer. The answer is then calculated.
The script implements a listen event that then waits for the answer. If a correct answer is
given, the avatar who answered is paid a small prize.

Implementing Basic Security

Some objects will only function when their owner is trying to use them. It is also possible
to program an object to only function with group members. The following sections show how
to implement basic security both for the owner and for groups.

Implementing Owner Security

Sometimes an object will only work with the owner of that object. This is particularly
true of vehicles. The following script shows how to detect if someone, other than the owner,
is trying to use the object. Listing 7.7 shows this.

Listing 7.7: Owner Security

default
{
touch_start (integer total_number)
{
integer i;
for(i=0;i<total number;i++)
{
if(llDetectedKey (i) !=11GetOwner ())
{
11Say (0, llDetectedName (i)
+ " you are not my owner.");
}
else
{
11Say (0, llDetectedName (i)
+ " you are my owner.");
}
}
}

125

126

Introduction to Linden Scripting Language for Second Life

When the above script is touched, the above script's touch start event handler
is called. The touch start event handler is passed a value that indicates how many
avatars are touching it at once. It is very rare that more than one avatar will be touching the
object at once. However, if the object is likely to have more than one avatar touching at once,
the script should make use of the total number parameter.

This script makes use of the total number parameter. Aloop counts through all of
the avatars that have touched the object. The key to each touching avatar is obtained with
l1DetectedKey. This key is compared against the owner of the object. If the owner
and touching avatar are not the same, the avatar is informed that they are not welcome. This
provides a quick method to determine whether an avatar is the owner or not.

Implementing Group Security
Sometimes an object will only work with the group of that object. The following script

shows how to detect if someone, other than the group, is trying to use the object.

The group that an object is in can be set from the object properties window. Figure 7.3
shows an object with a group set.

Chapter 7: Events 127

Figure 7.3: Setting the Group of an Object

File Edit View World Tools Help C 0, 158, 505 (PG) - Enc 7 5 (@ seach]
: — X

Island Owner Advisory Council
BookIsland events and discussion
Builders of SecondLife

Concierge Information Group
Concierge Special Events Group
Encogia Amusement Park
Heaton Research Courses

Heatnon Research. Inc.

oK JB Eancel!

W @TEe | o .l
Click here to chat. it | Gestires b 4
icate) { chat) @WEY \ Snapshot "Searcht™ (Build) @"MinizMapt® (@ SMap « Inventory:

("8 Second Life FLIEIO I omem

The following script checks to see whether the user that touched the object is in the
same group as the object being touched. Listing 7.8 shows this.

Listing 7.8: Group Security

default

{

touch start (integer total number)

integer i;
for (i=0;i<total number;i++)

{

if(1llDetectedGroup (i) ==FALSE)
{
11Say (0, llDetectedName (i)

+ " you must be in correct group.");

else

128

Introduction to Linden Scripting Language for Second Life

{

11Say (0, llDetectedName (i)
+ " you are in my group.");

To detect whether the touching avatar is in the same group as the object the
l1lDetectGroup function is called. If the avatar is in the same group, then a value of
TRUE is returned, otherwise FALSE is returned.

Summary

Events are a very common part of Second Life programming. Events are nothing more
than functions with special names. These functions are called by Second Life when a specific
event occurs. By adding events to your script, you can handle these events. Events are the
primary way that your scripts are aware of what is going on around them.

Arrays are a common part of many programming languages. Arrays allow a list of items
to be stored. Unfortunately, the Linden Scripting Language does not support arrays. Rather
a special object type called a list is used. The list object type will be covered in the next chap-
ter. The list object type allows the Linden Scripting Language to perform many of the same
tasks that other languages perform with arrays. Additionally, lists are more flexible than
arrays in many respects.

Chapter 7: Events 129

130 Introduction to Linden Scripting Language for Second Life

Chapter 8: Lists

CHAPTER 8: LisTs

¢ Adding and Removing From a List
¢ Accessing a List

e Strided Lists

¢ Searching a List

Second Life does not support arrays. To keep a collection of variables a 1 i st must be
used. Lists are much more advanced than the arrays provided by most other programming
languages. Lists can hold any sort of variable, as an integer or £loat. Lists can also
hold objects, such as a vector or rotation. The 1ist object can even contain other
lists.

A 1list is declared by using the 1ist type. The following line of code declares an
empty Llist.
list myList;

Additionally, lists can be declared with items already in the 1ist. The following 1ist
contains four numbers.

list myList = [1, 2, 3, 4];

As stated previously, a 1ist can contain more than one type of item. The following
1list is declared to hold two numbers and a string.

list myList = [1, 2, "Three"];

Once the 1ist has been declared it is ready for use.

Adding and Removing Items to Lists

Adding and removing data from lists is one of the most common 1ist operations. In
this section you will learn how to add and remove data froma 1ist.

Adding Data to a List

Adding and removing items from a 1 1 st is fairly easy. The addition operator (+) is used
to combine two lists, for example, lists named 1istA and 1istB.

list listA = [1,2];
list 1istB [3,4];

The addition operator can now be used to add these two lists together.

131

132

Introduction to Linden Scripting Language for Second Life

list listC = listA + 1istB;

The object 1istC now contains four numbers, the values 1,2,3 and 4. The two lists
have been combined. This is the only way to add items to a 1 i st. The item must already be
in another 1ist. Fortunately, lists can be created on the fly. If you had a string named
str that you wanted to add to a 11 st, the following would do it.

string str = "Hello World";

list myList;
myList+= [str 1;

The above code creates a temporary 1ist and adds it to the List named myList.
The += operator is a shorthand form of the following.

myList = myList + [str];

You can use either notation in your script. It is simply a matter of what you find the most
readable.

Removing Data from Lists

Data can be removed from any location in the 1ist. Additionally, multiple 1ist
items can be removed with a single function call. To remove items from a 1ist use the
ll1DeleteSubList function. The following lines of code demonstrate how to delete
fromalist.

list colors = ["Red", "Green", "Blue", "Yellow",
"Black", "Orange"];
names = llDeleteSubList (names, 1, 2);

The above code would delete from position one to position two. This would result in the
colors Green and Blue being deleted. It is important to note that lists begin at array element
Z€ero.

To delete all of the items in a 1ist, assign the 1ist to a new empty 1ist. The fol-
lowing line of code would delete all items frommyList.
myList = [];

After the above line was executed myList would be empty.

Retrieving Data from Lists

There are several ways to retrieve data from a 1ist. The easiest is simply to use is
11DumpList2String. The 11DumpList2String function is only suitable for
debugging purposes as it does not format the 1ist in any way. To see how a variety of ob-
jects are displayed, consider Listing 8.1.

Chapter 8: Lists 133

Listing 8.1: Dumping List Data

default
{
touch start (integer total number)
{
list myList = [1, 2.0, "a string", 1llGetOwner()];
1l0wnerSay ("<" + 1lDumpList2String(myList,"><") + ">");
}

To execute the above script, touch the object that contains it. The above code would
display the following line.

<1><2.000000><a string><cOclclba-402e-4b31-a569-200f42a6335e>

If you execute the above line, your results will be somewhat different. The above key is
unique to my avatar. The call to L1GetOwner will return a different result depending on
who the owner is.

The usual method for accessing the data is to call one of the 11 List2 functions. These
functions access a specific 1ist item as a specific type. There are seven in all. They are
summarized in Table 8.1.

Table 8.1: Accessing Data in a List

Function Purpose

lIList2Integer Retrieve an integer from the list.

[IList2Key Retrieve a key from the list.

lIList2List Retrieve a list from the list.

lIList2ListStrided Retrieve a strided list from the list. Strided lists will be covered
later in this chapter.

lIList2Rot Do not use, will return a zero rotation. It is better to use (rotation
)lIList2String(src, index).

lIList2String Retrieve a string from the list.

lIList2Vector Do not use, will return a zero vector. It is better to use (vector)lIL
ist2String(src, index).

The script shown in Listing 8.2 will display a 1ist using 11List2Stringand a
loop.

134

Introduction to Linden Scripting Language for Second Life

Listing 8.2: Display a List
default
{
touch start (integer total number)
{
list colors = ["Red", "Green", "Blue", "Yellow",
"Black", "Orange"];
integer 1i;
for (i=0;i<llGetListLength(colors); ++i)
{
110wnerSay(llList2String(colors,i));
1
1
1
The above code will display all of the items in the colors 1ist.
Lists and CSV

The comma-separated values (or CSV; also known as a comma-separated list or comma-
separated variables) file format is a file type that stores tabular data. The format dates back to
the early days of business computing. For this reason, CSV files are common on all computer
platforms. Second Life implements its own special form of CSV. The Second Life form of
CSV is not directly compatible with the generally accepted form of CSV. The Linden Script-
ing Language implements several functions that work with a Second Life's special form of
CSV.

The Second Life form of CSV differs from the standard form of CSV in several important
ways. First, the quote is not used around strings. A CSV string is simply comma separated.
If you need to escape an element, enclose it in less-than (<) and greater-than (>) symbols.
This allows a single element to contain a comma. The following is an example of a line of
Second Life CSV values.

1, 2.000000, a string, <156.374557, 163.015213, 504.986145>

Notice the last element in the 1ist? Itisa vector. The enclosing < and > symbols
prevent the commas inside the vector from causing the vector to be treated as three separate
units. Because of the < and > symbols, the vector becomes one single element.

It is very convenient to use the Second Life CSV format. As you will recall from Chapter
6, strings can easily be communicated between objects. The CSV functions allow lists to eas-
ily be communicated between objects. Use the CSV functions to converta 1ist to a string.
Then communicate the string. The object on the other end of the communication can then
convert the CSV string backtoa 1ist.

Chapter 8: Lists 135

Converting a List to CSV

To converta 1ist to CSV, use the 11List2CSV function. Listing 8.3 shows how to
do this.

Listing 8.3: Convert a List to CSV

default
{
touch start (integer total number)
{
list myList = [1, 2.0, "a string", 1llGetPos()];
string s = 11List2CSV (myList) ;
110wnerSay (s) ;
}

Calling 11List2CSV will convert the above 1ist into the following string.
1, 2.000000, a string, <156.374557, 163.015213, 504.986145>

Performing the reverse option is covered in the next section.

Converting (SV to a List

To convert a string back into a 1ist, use the 11CSV2List function. Listing 8.4
shows how this is done.

Listing 8.4: Convert CSV to a List

default
{
touch start (integer total number)
{
string str = "1, 2.000000, a string,
<156.374557, 163.015213, 504.986145>";
list myList = 11CSV2List(str);
11Say (0,11DumpList2String (myList,", ")) ;
1

The CSV string contained in the above script will be parsed to a string. The resulting
1ist will then be displayed using 11DumpList2String.

Parsing Strings

It is also possible to parse strings with delimiters other than just commas. The Linden
Scripting Language provides two functions to parse general strings. They are summarized
in Table 8.2.

136 Introduction to Linden Scripting Language for Second Life

Table 8.2: Accessing Data in a List

Function Purpose
lIParseString2List Parse a list to a string using the specified delimiter.

lIParseStringKeepNulls | Parse a list to a string using the specified delimiter. Keep any
empty elements.

The above two functions work just like the CSV functions, except that you are allowed to
specify the delimiter, or what separates the values.

List Statistics

Statistics can be gathered on a 1ist. This provides for a quick way to take the sum,
average, or another statistic on the numbers. To obtain statistics on a 1ist, use the
llListStatistics function. The signature for the 11ListStatistics func-
tion is shown here.

float llListStatistics(integer operation, list src)

The operation types are summarized in Table 8.3.

Table 8.3: Statistic Types

Statistic Type Purpose
LIST_STAT_RANGE Returns the range.
LIST_STAT_MIN Retrieves the smallest number.
LIST_STAT_MAX Retrieves the largest number.
LIST_STAT_MEAN Retrieves the mean (average).
LIST_STAT_MEDIAN Retrieves the median number.
LIST_STAT_STD_DEV Calculates the standard deviation.
LIST_STAT_SUM Calculates the sum.
LIST_STAT_SUM_SQUARES Calculates the sum of the squares.
LIST_STAT_NUM_COUNT Retrieves the number of float and integer ele-
ments.
LIST_STAT_GEOMETRIC_MEAN [Calculates the geometric mean.

Listing 8.5 shows an example of collecting statistics. This simple script calculates all of
the statistics shown in the previous table, for a 1ist containing the numbers one through
ten.

Chapter 8: Lists 137

Listing 8.5: Getting List Statistics

default

{

touch start (integer total number)

{

list myList = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

11Say (0, "LIST STAT RANGE: " + (string)
llListStatistics (LIST_STAT RANGE, myList));
11Say (0, "LIST STAT MIN: " + (string)
llListStatistics (LIST_STAT MIN, myList));
11Say (0, "LIST STAT MAX: " + (string)
llListStatistics (LIST_STAT MAX, myList));
11Say (0, "LIST STAT MEAN: " + (string)
llListStatistics (LIST_STAT MEAN, myList));
11Say (0, "LIST STAT MEDIAN: " + (string)
llListStatistics (LIST STAT MEDIAN, myList));
11Say (0, "LIST STAT STD DEV: " + (string)
llListStatistics (LIST_ STAT STD DEV, myList));
11Say (0, "LIST STAT SUM: " + (string)
llListStatistics (LIST_STAT SUM, myList));
11Say (0, "LIST STAT SUM SQUARES: " + (string)
llListStatistics (LIST STAT SUM SQUARES, myList));
11Say (0, "LIST STAT NUM COUNT: " + (string)
llListStatistics (LIST_STAT NUM COUNT, myList));
11Say (0, "LIST STAT GEOMETRIC MEAN: " + (string)
llListStatistics (LIST_ STAT GEOMETRIC MEAN, myList));

When executed, this script produces the following output.

[] Object: LIST STAT RANGE: 9.000000

[] Object: LIST STAT MIN: 1.000000

[] Object: LIST STAT MAX: 10.000000

[] Object: LIST STAT MEAN: 5.500000

[] Object: LIST STAT MEDIAN: 5.500000

[11:28] Object: LIST STAT STD DEV: 3.027650

[] Object: LIST STAT SUM: 55.000000

[] Object: LIST STAT SUM SQUARES: 385.000000
[] Object: LIST STAT NUM COUNT: 10.000000

[] Object: LIST STAT GEOMETRIC MEAN: 4.528728

Statistics can be a quick way to perform an operation over a 1i st that would otherwise
require looping across each 1ist element.

138

Introduction to Linden Scripting Language for Second Life

Sorting, Searching and Striding Lists

Second Life does not support a two-dimensional array and lists are one-dimensional. De-
spite the fact that lists are one-dimensional, they support something called a stride. A stride
simulates a two dimensional array with a one dimensional array. Consider an array that
would store a 11ist of products that will be sold in Second Life. You would like to store the
following two values for each product:

¢ Product Name
¢ Product Price

A strided 11ist could be used to store these items.

list products = ["Jet Pack",25, "Blue Car", 100, "Black Hat",
50 1;

Notice how each product contains two 1ist items? There are really only three items in
the 1ist, not six. There are three groups of two. This 1ist uses a stride of two. Using
this stride allows the 1ist to be thought of as a list of products.

Sorting Lists

Lists can be sorted using the 11lListSort function. The signature for the
11ListSort function is shown here.

list 1lListSort(list src, integer stride, integer ascending)

A 1list is provided that is to be sorted for the src parameter. The stride is specified
in the stride parameter. If there is no stride, specify 1. Then a value of TRUE is specified for
the ascending parameter if the sort is to be ascending.

Consider calling the 11ListSort function on the above 1ist as follows.

products = llListSort(products, 2, TRUE);

The above function call would sort the 1ist of products by the product name. The first
element of a strided group is always what is sorted. Therefore it is important to choose the
first element of a strided group carefully. In the case of the above 1ist, the product name
is the first element of each group. Therefore, the 1ist is sorted by product name.

Randomizing Lists

In addition to sorting, lists can also be randomized. To randomize a list, use the
llListRandomize function. The 11ListRandomi ze function has the following
signature.

list llListRandomize(list src, integer stride);

Chapter 8: Lists

The following call would randomize the 1ist of products.
products = llListRandomize(products, 2);

It is important to note that both the 11ListSort and 11ListRandomize func-
tions return entirely new lists. This is why the results of both calls were assigned to the
products 1ist.

Searching Lists

It is also possible to search a 1ist. This is done using the 11ListFindList
function. Unfortunately, the 11ListFindList function does not support strides. If
you would like to search a strided 1ist, do it as a regular List. The signature for the
11ListFindList function is shown here.

integer 1llListFindList(list src, list test)

The first parameter, named sxc, is the 1ist to search. The second parameter, named
test, is what is being searched for. For example, to search myList for the name “Tom”
the following function call would be used.

integer i1 = 1llListFindList(myList, ["Tom"]);

This would place the index of the first occurrence of the string “Tom” into the variable i.
If “Tom” is not found, i will be set to -1. The search is case sensitive.

Summary

The Linden Scripting Language does not support arrays. To store lists of objects and
variables the Linden Scripting Language, use lists. This chapter showed how to work with
lists of objects and variables.

A list is one dimensional. Records cannot be stored in a 1ist. To support some-
thing equivalent to a two-dimensional array, the Linden Scripting Language supports strided
lists. A strided 1ist asingle 1ist grouped together. For example, to store the name and
price of an item into a strided 1ist, use a stride of two. The elements in the 1ist would
be pairs, where each element pair makes up a single item.

So far this book has focused on the mechanics of the Linden Scripting Language. Other
than communication, little interaction with the outside world has occurred. The remainder
of the book will show how to interact with the objects that contain the scripts. The objects
can be modified directly, or they can be moved. Movement can occur in two ways, physical
or non-physical. The next chapter introduces non-physical movement.

139

140 Introduction to Linden Scripting Language for Second Life

Chapter 9: Non-Physical Movement

CHAPTER 9: Non-PHysicAL MOVEMENT

¢ Adding and Removing From a List
¢ Accessing a List

e Strided Lists

¢ Searching a List

In the previous chapters we created objects that interact with the world around them by
communicating. There are many other ways that objects can interact. They can move in two
ways. The first is physical movement. Physical movement occurs when objects follow the
rules of physics. Objects move because forces act upon the objects.

The second way that objects can move is through the direct manipulation of their %, y and
z coordinates. Every object has three numbers associated with it that specify that object's
location. This chapter will show you how to move objects by manipulating their coordinates.
However, before we begin, it is important to understand how Second Life represents coordi-
nates.

Second Life Coordinates

The Second Life world is a large grid of regions. When you look at the map, you see
regions. Figure 9.1 shows the Second Life map with several regions visible.

141

142 Introduction to Linden Scripting Language for Second Life

Figure 9.1: Gyeonu and Surrounding Regions

W Second Life I
File Edit View World Tools Help () @ G 5 355,177 | R R

- X

" My Friends v
. My Landmarks v

s

Clear ShowiMy/ llocation
Copy'SLUR toclipboard

34 - . () @ (@l i)]
GIGicT; Al Click here to chat. Say 10Ut Gestures
Communicate® (Chat)LS ying) Blild Mini=Map Map) @lnventory

7\ = i . .
\ "'g i = W Second Life FLAEIC F onpm

The area you are viewing in Figure 9.1 is called mainland. Mainland is a very large grid
of regions that people can buy and sell individual plots of land. There are other regions near
Gyenou. To the north and south are the regions of Chumong and Walcha Plane. To the east
and west are Haemosu and Jiknyeo.

In addition to mainland, there are private islands. Private islands do not have neighbor-
ing regions unless the island owner buys addition islands. Whenever someone refers to
“buying an island” in Second Life, they mean buying a private region, away from the main-
land. The island of Encogia, where this book's examples reside, is a private island. Figure 9.2
shows the map near the island of Encogia. Notice there are no regions immediately adjacent
to Encogia Island.

Chapter 9: Non-Physical Movement 143

Figure 9.2: Encogia Island

(o]

Fle Edit View World Tools Help @) @ G)-Encog 735 PMPST @ 1$55,177 [EERAEENE
-

World

Terrain

My Friends v
My Landmarks v

=

.,

¢ ShowMy'location
W Gopy S RIS toTelpoErd e

| Gestires hd

Non-physical movement occurs entirely within a region. A region has its own x, y and
z-coordinates. The X, y and z coordinates start over when a region's boundary is crossed.
Inside of a region the x and y coordinates are flat on the ground. The z coordinate extends
up and down. Figure 9.3 shows the x, y and z coordinates laid out on a box. The up and down
arrow is the z coordinate. The x and y extend on the ground.

144

Introduction to Linden Scripting Language for Second Life

Figure 9.3: The Coordinate System

W Second Life =X

World Tools Help @) @@ Encosialis, 33,26 (Ps) Encoz’ 7:36PMPST @ L$55.177 | EERaRE

5

Profileny

@ (& aEle LT |

Gestires hd

Search Build) @MinizMap Map Inventony

G EEE | , < B @ omPm

You can always see the current x, y and z coordinates at the top of the Second Life screen.
Look at the top of Figure 9.3, at the same level as the menu bar. You will see the region name
of Encogia, followed by three numbers. These three numbers are the x, y and z coordinates.
If you fly up, the z-coordinate increases. If you fly down, the z coordinate decreases. Move-
ment east and west affects the x coordinate. Similarly, movement north and south affects the
y coordinate.

Every object in Second Life has an x, y and z coordinate. The Linden Scripting Language
gives you functions to change the coordinates of an object. If you change the coordinate of an
object, the object will move. However, changing the coordinates of any object will only move
the object within a region. To move an object across a region boundary, physical movement
must be used. Physical movement is covered in the next chapter.

Displaying an Object's Location and Rotation

The two most basic attributes of an object are its position and rotation. Both are expressed
in terms of the three coordinates. To get the current position of an object call L1GetPos.
To get the current rotation of an object call L1GetRot. Calling 11GetPos will return a
vector. A vector contains X, y and z components. The x and y coordinates range from 0,0 at

Chapter 9: Non-Physical Movement

the southwest corner of a region to 255,255 at the northeast corner of a region. The z coordi-
nate starts at zero, below ground and goes up to 65,556 very high in the air. In all practicality
you will not go that high into the air. Avatars cannot fly beyond 200 without a jet pack and you
cannot build beyond about 1000.

Listing 9.1 shows a simple script that uses 1 1GetPos to display the current position of
the object that contains the script.

Listing 9.1: Display Current Position

default
{
touch start(integer total number)
{
rotation rot = 1lGetRot () ;
vector vrot = 1llRot2Euler (rot);
11Say (0, "X-Rotation: " + (string) (vrot.x*RAD TO DEG)) ;
11Say (0, "Y-Rotation: " + (string) (vrot.y*RAD TO DEG)) ;
11S8ay (0, "Z-Rotation: " + (string) (vrot.z*RAD TO DEG)) ;
!

As you can see from the above listing, the current position is stored into a vec toxr vari-
able named pos. The x, y and z components can be accessed directly. For example pos .x
will access the x component of the position.

Rotations in Second Life are not stored in a vector object. Rather, they are stored in
rotation objects. A rotation object has four components, X, y, z and s. These
are called quaternions. A quaternion is a mathematical concept beyond the scope of this
book. Most scripts do not directly deal with quaternions. Rather, quaternions are usually
converted to regular x, y and z rotation. This is done using the 11Euler2Rot and
11Rot2Euler functions. For example, to display the current rotation of any object
a script such as Listing 9.2 would be used.

Listing 9.2: Display the Current Rotation

default
{
touch start(integer total number)
{
rotation rot = 11lGetRot () ;
vector vrot = 1llRot2Euler (rot);
11Say (0, "X-Rotation: " + (string) (vrot.x*RAD TO DEG)) ;
11Say (0, "Y-Rotation: " + (string) (vrot.y*RAD TO DEG)) ;
11Say (0, "Z-Rotation: " + (string) (vrot.z*RAD TO DEG)) ;
!

145

146

Introduction to Linden Scripting Language for Second Life

Asyou can see from the above code, the rotationisfirst obtained and placed in a vari-
able named rot. The 11Rot2Euler function is then used to convert the rotation
to a vector named vrot. The variable vrot now contains the %, y and z rotations in ra-
dian form. These values are now printed out. Multiplying by the DEG_TO_ RAD constant
will convert the radians to degrees.

Changing and Object's Location and Rotation

There are two functions named 11SetPos and 11SetRot that can be used to
change the location of an object. Often, you will want to change the position of an object
based on its previous position. For example, adding one to the z-coordinate will move the
object up into the air slightly. Listing 9.3 shows a simple script that keeps increasing the x-
coordinate.

Listing 9.3: Changing Object Location

default
{
state entry ()
{
l1SetTimerEvent (1) ;
}
timer ()
{
vector pos = 1llGetPos () ;
pPOS . X++;
l1SetPos (pos) ;
110wnerSay ("I am at: " + (string)pos);
}

The above script will move its object forward in the x direction. The script obtains the
current position and then adds one to the x-coordinate. Eventually, the x coordinate will be-
come too large and the object will be removed. When this happens, you will get a message
similar to the following.

Second Life: Your object 'Object' has been returned to your in-
ventory lost and found folder from parcel 'Scripting Examples for
Second Life' at Encogia 257.747, 213.534 because it went off-
world.

It is also possible to change the object's rotation using 11SetRot. Listing 9.4 shows a
simple script that rotates an object.

Listing 9.4: Changing Object Rotation

default

{

state entry ()

Chapter 9: Non-Physical Movement
{
11SetTimerEvent (1) ;
1
timer ()
{
rotation rot = 1lGetRot () ;
vector vrot = l1llRot2Euler (rot) ;
vrot+=<0,0,10*DEG_TO RAD>;
rot = 11lEuler2Rot (vrot) ;
l1SetRot (rot) ;
1

The script begins by obtaining the current rotation as the variable rot. Next the cur-
rent rotation is converted to a vector using 11Rot2Euler. The rotation is
then moved by ten degrees on the z-axis. The number ten is converted to radians using the
DEG_TO_RAD constant. Next, the vector is converted back into a rotation when
is then set for the object using 11SetRot.

The above script gives you absolute control over the rotation of an object. However, if
you only want an object to endlessly rotate on one or more axes there is a much more effi-
cient way to do it. The 11TargetOmega allows you to preset a rotation on one or
more axes. The object will continue to rotate without any need for a t imer event. Listing
9.5 shows how to use 11TargetOmega.

Listing 9.5: Rotation with liTargetOmega

default
{
state entry ()
{
l1lTargetOmega(<0,0,1>,PI,1.0) ;
1

The first parameter specifies which axis to rotate about. The second parameter is the
spin rate. The third is the gain. The gain specifies the amount of force in the spin. For non-
physical objects, this value is not used and is generally set to one.

A Touring Balloon

With the material covered this far in the book, a complex example can now be presented.
A touring hot-air balloon will be created. This balloon will allow several passengers to sit in
the balloon and take a tour of a region. The balloon can be seen in Figure 9.4.

147

148 Introduction to Linden Scripting Language for Second Life

Figure 9.4: A Touring Balloon

The balloon must be preprogrammed with a course to follow. This is done through a
notecard. The notecard used for the balloon on the Encogia Island is shown in Listing 9.6.

Listing 9.6: Gonfiguring the Balloon

<184.440,73.236,50>,Balloon has reached 50 meters. Beginning tour.
<244,123,50>,This is the bay of Encogia Beach. From here you can
see the ferris wheel.

<244,193,50>,The Heaton Research Tower is to the left. Heaton Re-
search is the sponsor of this island.

<240,242,50>, From here you can see the sky lift. This ride al-
lows you to cross the bay.

<181,248,50>, Make sure you try the log ride.

<100,249,50>, Now flying over the back part of the island. The
island owners and staff live here. Ahead is Roman Yongho's house.
<13,169,50>, Flying over the back of the island.

<22,75,50>, Ahead is Encog Dod's home. Encog built much of this
island.

<70,10,50>, Now returning to the amusement park.

<126,14,50>,To the left is the bumper car ride. Balloon is head-
ing back.

<182.461,73.236,50>,Balloon has returned to base.
<184.440,773.236,21.652>,Balloon is landing.

Chapter 9: Non-Physical Movement 149

Each line in the configuration card specifies one waypoint on the balloon's tour. There
are two values, separated by a comma. The first is the vector of the waypoint. This is the x,
y and z-coordinates of the waypoint. The second value specifies a s tring that the balloon
will “say” upon arrival at that waypoint.

The source code for the script for the touring balloon is shown in Listing 9.7.
Listing 9.7: A Touring Balloon

float SPEED = 1;

vector target;

list waypoints;

integer currentWaypoint;
string message;

// for loading notecard

string notecardName = "Configure Balloon";
key notecardQuery;

integer notecardIndex;

integer nextWayPoint ()

if (currentWaypoint>= 11GetListLength (waypoints))
11Say (0, "Ride over") ;
return TRUE;

else
target = llList2Vector (waypoints, currentWaypoint) ;
message = 1llList2String(waypoints, currentWaypoint+1) ;
currentWaypoint+=2;
return FALSE;

default

state entry ()
11Say (0, "Balloon loading waypoints...");
notecardIndex = 0;
notecardQuery = 1l1lGetNotecardLine (notecardName,

notecardIndex++) ;

150 Introduction to Linden Scripting Language for Second Life

dataserver (key query id, string data)

{
if (notecardQuery == query_ id)
{
// this is a line of our notecard
if (data == EOF)
{
11Say (0, "Data loaded, balloon ready...");
state waiting;

} else

{

list temp = 11CSV2List (data) ;

vector vec = (vector)llList2String(temp,0) ;

string str = 1llList2String(temp,1) ;

waypoints+=[vec, str];

notecardQuery = 1llGetNotecardLine (notecardName,
notecardIndex++) ;

}

state running

{

state entry()
currentWaypoint = 0;
nextWayPoint () ;
11SetTimerEvent (0.1) ;

}

timer ()
vector pos = 1lGetPos() ;
integer match = 0;

if(1lFabs(pos.x - target.x) < SPEED)
{

pos.x = target.x;

match++;

}

else

{

}

Chapter 9: Non-Physical Movement

if(pos.x > target.x)
pos.x-=SPEED;

if(1lFabs(pos.y - target.y) < SPEED)

if(1lFabs(pos.z - target.z) < SPEED)

else
pos .x+=SPEED;
1
{
pos.y = target.y;
match++;
1
else
{
if (pos.y > target.y)
pos.y-=SPEED;
else
pos.y+=SPEED;
1
{
pos.z = target.z;
match++;
1
else
{
if(pos.z > target.z)
pos . z-=SPEED;
else
pos.z+=SPEED;
1

l11SetPos (pos) ;

if (match==

{

)

string hold = message;
if (nextWayPoint ())
state waiting;

11say (0,

state waiting

{

hold) ;

151

152

Introduction to Linden Scripting Language for Second Life

state entry ()

{ 11Say (0, "Balloon is waiting.");
}
link message (integer sender num, integer num, string str, key
id)
{
if (str=="go")
{
state countdown;
}
}
}
state countdown
{

state entry ()

{

llSetTimerEvent (20) ;

11Say (0, "Welcome to the balloon ride.

in 20 seconds. Please take your seats!");

}

timer ()

{
}

state running;

Balloon will launch

The touring balloon is made up of four states. These states are listed here.

e default

® waiting

e countdown
® running

The default state does nothing more than load the configuration notecard. Once the
notecard has been loaded, the waiting state is entered. The waiting state continues
until someone sits in the balloon. Once the balloon enters the waiting state, it will wait for
20 seconds. This allows other people to board the balloon. When the 20 seconds is up the
balloon enters the running state. In the running state, the balloon will begin following
its waypoints until complete. Once the balloon has completed its course it enters the waiting

state again.

Script Variables and Functions

There are several variables that are defined for the script to run.

Chapter 9: Non-Physical Movement

float SPEED = 1;

vector target;

list waypoints;

integer currentWaypoint;
string message;

The SPEED variable can be set to however fast the balloon should travel. The higher
the number, the faster the balloon. The target variable holds the current destination. The
waypoints list holds the waypoints. The currentWaypoint holds the index of the cur-
rent waypoint. The message variable holds the current message for the waypoint.

The waypoints list holds pairs of items. Each waypoint is made up of a vector location
and a message to display. Because of this, the currentWaypoint index is increased by
two each time a waypoint is reached.

There are also several variables used to read the notecard.

// for loading notecard

string notecardName = "Configure Balloon";
key notecardQuery;

integer notecardIndex;

The notecardName variable holds the name of the configuration notecard. The
notecardQuery variable holds the key to the query of the notecard while it is being
read. Finally, the notecardIndex variable holds the current line of the notecard.

A global function is also defined to move to the next waypoint. This function is called
nextWayPoint.

integer nextWayPoint ()

{

If the currentWaypoint variable has reached the end of the waypoints list, the
ride is over. The value TRUE is returned to signify that.

if (currentWaypoint>= 1lGetListLength (waypoints))

{

11Say (0, "Ride over") ;
return TRUE;

}

If we have not reached the end, read the pair for the currentWaypoint index. The
first value is the target vector. The second value is the message to display.

else

{

target = llList2Vector (waypoints, currentWaypoint) ;
message = 1llList2String(waypoints, currentWaypoint+1) ;

153

154

Introduction to Linden Scripting Language for Second Life
Increase the current waypoint by two to move past the pair. Return FALSE to signal
that we have not reached the end.

currentWaypoint+=2;
return FALSE;

}
}
The nextWaypoint function is used at several locations within the balloon script.
Default State

All scripts begin in the default state. The default state for the balloon ride is
responsible for loading the configuration notecard. Once the notecard has been read, the
script will enter the waiting state.

default

{

When the state is first entered, the balloon announces that it is loading the waypoints.
The notecard index is reset to zero and the notecard is queried by reading the first line.

state entry()

{
11Say (0, "Balloon loading waypoints...");
notecardIndex = O;
notecardQuery = 1llGetNotecardLine (notecardName,
notecardIndex++) ;
!

When anotecard line is queried, the response is notinstant. However,thedataserver
event will soon be called.

dataserver (key query id, string data)

{

First, check to see whether the query id matches the query that we requested. Itis
highly unlikely that data from any other query would enter this event; however, it is a good
idea to perform this check.

if (notecardQuery == query id)

{

If this is our query, check to see whether the end has been reached. If an end-of-file
(EOF) has been reached, announce that the balloon is ready and enter the ready state.

// this is a line of our notecard

if (data == EOF)

{
11Say (0, "Data loaded, balloon ready...");
state waiting;

Chapter 9: Non-Physical Movement 155

} else

{

If valid data has been found, parse the list. Each configuration item has two values sepa-
rated by a comma. This is a valid Second Life CSV line therefore 11CSV2List can be
used to parse the line to a list.

list temp = 11CSV2List (data) ;
Obtain the vector and message from the 1ist.

vector vec = (vector)llList2String(temp, 0) ;
string str 11List2String(temp, 1) ;

Add this pair of items to the waypoints 1ist.
waypoints+=[vec, str] ;

Query for the next line. This will cause the dataserver event to be called again with
either the next line of an EOF value.

notecardQuery = 1llGetNotecardLine (notecardName,
notecardIndex++) ;

After all of the configuration data has been loaded, the default state will end and the
waiting state will begin.

Waiting State

The balloon is triggered into action when an avatar sits on it. While the balloon is waiting
for an avatar to sit, it is in the waiting state.

state waiting

{

The waiting state begins by announcing that the balloon is waiting.

state entry ()

{
}

When the user sits on one of the provided seats in the balloon, a 1ink messageis
sent. The script for each of the seats will be shown later in this chapter. However, it is a very
simple script. The seat scripts send the a “go” message to the balloon when someone sits.

11Say (0, "Balloon is waiting.");

link message (integer sender num, integer num, string str, key
id)

156

Introduction to Linden Scripting Language for Second Life

{

Ifit is a “go” message then enter the countdown state.

if (str=="go")

{
state countdown;
1
1
1
The balloon will spend most of its life in the waiting state.
Countdown State

After the first passenger is seated in the balloon, the balloon will begin a countdown.
This 20 second countdown allows other passengers to sit before the balloon departs. Provid-
ing this countdown is the job of the countdown state.

state countdown

{

When the countdown state begins a timer is set for 20 seconds. All of the timers
seen so far have occurred at regular intervals. Timers can also be useful for a countdown
to a single event. The timer will only reach one 20 second interval, and then the state will
change. Because the state changes, the countdown state never gets a chance to reach
the second 20 second interval.

state entry ()

{

11SetTimerEvent (20) ;
11Say (0, "Welcome to the balloon ride. Balloon will launch
in 20 seconds. Please take your seats!");

}

When the 20 second interval is reached, the timer event simply moves on to the
running state.

timer ()

{
}

state running;

The running state is where the balloon navigates the waypoint list. The running
state is discussed in the next section.

Chapter 9: Non-Physical Movement

Running State

The running state is where the balloon performs all of its movements. The balloon
makes use of non-physical movement. The 11SetPos function is used to move the bal-
loon around the region.

state running

{

When the running state first starts, the currentWaypoint is reset to zero.
This ensures that the balloon begins at the beginning of the course. The nextWayPoint
function is called to set the appropriate variables for travel to the first waypoint. Finally, a
timer is set to occur ten times a second. This timer is used to move the balloon.

state entry ()

{
currentWaypoint = 0;
nextWayPoint () ;
11SetTimerEvent (0.1) ;
!

All of the work of moving the balloon around the region is performed inside of the
timer event. The timer event is relatively simple. The timer looks at the current
position, then it looks at the target position. The x, y an z coordinates are adjusted to cause
the current position to slowly move towards the target position.

timer ()

{

First the current position is obtained. A local variable, named match is used to track
how many of the three dimensions have reached the target waypoint. When all three match,
it is time to move on to the next waypoint.

vector pos = 1lGetPos () ;
integer match = 0;

First check to see whether the x-coordinate has reached the target. If the x-coordinate
has reached this, set the x-coordinate to exactly match the target x-coordinate.

if(1llFabs(pos.x - target.x) < SPEED)

pos.x = target.x;
match++;

}

If the x-coordinate does need to be adjusted, check to see whether the x-coordinate is too
large or too small. Increase or decrease the current x-coordinate as appropriate to cause it to
become closer to the target x-coordinate.

else

{

157

158 Introduction to Linden Scripting Language for Second Life

if(pos.x > target.x)
pos.x-=SPEED;

else
pos .x+=SPEED;

}

Next, check to see whether the y-coordinate has reached the target. If the y-coordinate
has reached this, set the y-coordinate to exactly match the target y-coordinate.

if(1lFabs(pos.y - target.y) < SPEED)
{

pos.y = target.y;

match++;

}

If the y-coordinate needs to be adjusted, check to see whether the y-coordinate is too
large or two small. Increase or decrease the current y-coordinate as appropriate to cause it
to become closer to the target y-coordinate.

else
{
if(pos.y > target.y)
pos.y-=SPEED;
else
pos .y+=SPEED;

}

Next, check to see whether the z-coordinate has reached the target. If the z-coordinate
has reached this, set the z-coordinate to exactly match the target z-coordinate.

if(1llFabs(pos.z - target.z) < SPEED)
{

pos.z = target.z;

match++;

}

If the z-coordinate needs to be adjusted, check to see whether the z-coordinate is too
large or two small. Increase or decrease the current z-coordinate as appropriate to make it
closer to the target z-coordinate.

else
if(pos.z > target.z)
pos.z-=SPEED;
else
pos.z+=SPEED;

Chapter 9: Non-Physical Movement 159
Finally, the pos variable will contain the new desired position. Call 11SetPos to
move to the new adjusted position.
l1SetPos (pos) ;
Finally, check to see whether all three coordinates now match the target vector.

if (match==3)

{
string hold = message;
if (nextWayPoint ())
state waiting;
11Say (0,hold) ;
}

If all three coordinates match, move to the next waypoint. If the last waypoint has been
reached, enter the waiting state. The current message is moved to the hold variable, so that
it is not lost when we move to the next waypoint. Finally, the waypoint message is said.

Seat Scripts

The balloon contains several seats for passengers to sit on. It is convention in Second
Life to represent sit-down areas as small balls that the user selects to sit down on. Generally
pink balls are for females, blue for males, and yellow for gender neutral seating. Why does
gender matter sometimes? For example, some dance poses that use balls for the avatars to
sit on have specific parts to be played out by male vs female avatars.

The same seating script is placed inside of each of the seated balls. This script is shown
in Listing 9.8.

Listing 9.8: Balloon Seat Script

default
{
state entry()
{
11SitTarget (<-0.1,-0.25,0.25>, ZERO ROTATION) ;
11SetText ("Sit Here",<255,0,0>,1.0);
11SetSitText ("Sit Here") ;
}

changed (integer change)

{
key a = llAvatarOnSitTarget () ;
if (a==NULL KEY)
{

vector vec = <0.25,0.25,0.25>;

160 Introduction to Linden Scripting Language for Second Life

l1SetScale (vec) ;
11SetText ("Sit Here",<255,0,0>,1.0);

}

else

{

vector vec = <0.010,0.010,0.010>;
l1SetScale (vec) ;

l1SetText ("",<255,0,0>,1.0);
l1MessageLinked (LINK ROOT, 0, "go",NULL_KEY) ;

The balloon seating script begins by setting the sit target. The avatar is to sit straight up
and down so a ZERO_ROTATION works well. The appropriate text is also displayed just
above the sit ball. Additionally, the sit text is replaced by “Sit Here”. This changes the text
on the popup menu when the user right-clicks the sit ball.

default
state entry()
11SitTarget (<-0.1,-0.25,0.25>, ZERO_ROTATION) ;
11SetText ("Sit Here",<255,0,0>,1.0);
11SetSitText ("Sit Here") ;

When an avatar either sits down or stands up, the changed event is called.

changed (integer change)
{

Determine the avatar that has sat on the sit ball. This is done by calling the
1ll1AvatarOnSitTarget function.

key a = llAvatarOnSitTarget () ;
IfaNULL KEY is returned, the avatar has stood up.

if (a==NULL,_KEY)
{

Restore the ball to its regular size and return the object text.

vector vec = <0.25,0.25,0.25>;
l1SetScale (vec) ;
11SetText ("Sit Here",<255,0,0>,1.0);

}

else

{

Chapter 9: Non-Physical Movement 161

If an avatar is just sitting down, the sit ball should be shrunk to a very small size. This
gets it out of the way while the avatar is sitting there. Additionally, the “Sit Here” text is hid-
den. Finally, the “go” message is sent to all linked objects with the 1 1MessageLinked
function call.

vector vec = <0.010,0.010,0.010>;
l1SetScale (vec) ;

1l1SetText ("",<255,0,0>,1.0) ;
l1MessageLinked (LINK ROOT, 0, "go",NULL KEY) ;

This balloon script can be very useful for giving tours of a region. These balloons are
often used by visitors to Encogia island.

Summary

All objects in Second Life move around on regions. Inside of these regions are x, y and
z-coordinates. The x and y coordinates express movement on the surface plane. The z-coor-
dinate expresses movement up and down in altitude.

Second Life allows objects to move in two different ways. Objects can move physically,
by having forces applied to them. Objects can also move non-physically by directly manipu-
lating their %, y and z-coordinates. The rotation and position of an object can be set to achieve
this movement.

Second Life positions are stored in the vector data type. Second Life rotations are
stored in the rotation data type. A vector contains the x, y and z-coordinates of a position. A
rotation is expressed as a 4-part number, called a quaternion. Few scripts use quater-
nions directly. Most scripts convert these quaternions into radians of rotation about the x,
y and z-coordinates. The Linden Scripting Language provides several functions to perform
these transformations.

It is also possible to move objects using physics. Physical movement requires a force to
be applied to an object. Physics allows advanced vehicles, and other physical devices, to be
created. Physical movement will be covered in the next section.

162 Introduction to Linden Scripting Language for Second Life

Chapter 10: Physical Movement and Vehicles

CHAPTER 10: PHysicAL MoVEMENT AND VEHICLES

¢ Applying Force to an Avatar

¢ Understanding Force and Impulse
¢ Using Rotational and Linear Force
¢ Creating Vehicles

Second Life objects can also be moved physically. When an object is moved physically,
it obeys the laws of physics. This means that to move the object, force must be applied to it.
There are two ways to achieve physical movement:

¢ Direct Force Application
¢ Vehicle Motors

The simplest means of moving an object is to directly apply force to it. Functions are pro-
vided that apply either a constant or impulse force to an object. Additionally, this force can be
applied to another object or avatar. We will first examine how to apply force to an avatar.

Applying Force to an Avatar

An object can detect collisions from other avatars and objects. Chapter 7, “Events”
showed how to do this. By responding to these collisions with a small push upward, a simple
trampoline can be constructed. Figure 10.1 shows a trampoline in Second Life.

163

164 Introduction to Linden Scripting Language for Second Life

Figure 10.1: A Trampoline

The script used to create this trampoline is shown in Listing 10.1.

Listing 10.1: Trampoline Script

default
{
state entry()
{
11PreloadSound ("boing") ;
}
collision start(integer num detected)
{
integer i;
for(i = 0; i<num detected; i++)
{

key k = llDetectedKey (i) ;
if (k !=NULL KEY)
{
11TriggerSound ("boing", 1) ;
11PushObject (k, <0,0,25>, ZERO VECTOR, FALSE);

Chapter 10: Physical Movement and Vehicles 165

This script is contained entirely inside of the default state.

default

{

When the state is first entered, a sound is preloaded. This is a simple cartoon “boing”
sound that will be played when someone makes contact with the trampoline.

state entry()

{
}

Nearly all of the script functionality is contained inside of the collision start
event handler.

l1PreloadSound ("boing") ;

collision_start(integer num detected)

There could be many avatars on the trampoline at once. Because of this, it is important to
use the num detected parameter to make sure that each avatar is properly “bounced”.
The num detected parameter gives the number of avatars that have collided with this
event.

integer i;
for(i = 0; i<num detected; i++)

{

A key is obtained for each item that has collided with the trampoline.
key k = llDetectedKey (i) ;
Make sure that this is a valid key.

if (k |=NULL_KEY)
{

It is now time to “bounce” an object. Play the “boing” sound and apply an upward push
to the object. This is done using the L1PushObject.

11TriggerSound ("boing",1) ;
11PushObject (k, <0,0,25>, ZERO_VECTOR, FALSE) ;

166

Introduction to Linden Scripting Language for Second Life

The 11PushObject is used to apply a single force to an object. The signature for
this function is shown here.

11PushObject (key id, vector impulse, vector angular impulse, inte-
ger local)

The id variable specifies the object, or avatar, that is to be pushed. The impulse
vector specifies how much force should be applied to the x, y and z-coordinates. The
angular impulse variable specifies how much angular force to apply to the x, y and
z angles. Basically angular impulse spins the object, whereas impulse changes the
location of the object. Finally local, which should be TRUE or FALSE, specifies whether
the push is relative to the object's rotation.

Applying Force to the Current Object

First of all, before force can be applied to an object, it must be marked as a “physical ob-
ject”. If force is applied to a non-physical object, there will be no effect. There are two ways
to mark an object as physical. The first is to use the prim properties. Figure 10.2 shows an
object being marked as physical using the prim properties.

Figure 10.2: Marking an Object as Physical

World Tools Help

ISP (@K |

ISo el Click here to chat. GEstlres v

Communicate) { chat) lyr Snapshot Searceh (Build) SMiniEMap Wap! Inventony

\ f# e =2 "% Second Lite <& @ 7saaMm

Chapter 10: Physical Movement and Vehicles

An object can also be marked as physical or non-physical programatically. This is very
common for vehicles. A Second Life car will typically mark itself as physical when someone
first sits down at the car and is ready to drive. Once the avatar has left the car, the car will
mark itself as non-physical. This prevents the car from moving when other avatars bump into
it. Marking the car non-physical sets the “parking brake”.

To set the current object to physical, the following command is used.
l1SetStatus (STATUS PHYSICS, TRUE) ;

Similarly to set an object as non-physical, the following command is used.
l1SetStatus (STATUS PHYSICS, FALSE) ;

Once the current object is marked as physical, there are three ways to apply force to it.

¢ set a constant direct force
e apply an impulse
¢ use a vehicle motor

Using a vehicle motor will be explained in the next section. Usually, an impulse force
will be applied. This force is applied once per function call and sets the object in motion
at a speed dependent on how much force was applied. To apply an impulse force, use the
11ApplyImpulse function. The 11ApplyImpulse function has the following sig-
nature.

11ApplyImpulse (vector force, integer local)

The first parameter specifies the amount of force to be applied to the current object. This
vector specifies the amount of force to be applied to the x, y and z-coordinates. If the local
parameter is TRUE, then the force is applied based on the object's rotation.

You may be wondering what values to specify for the force. Just as in real physics, the
amount of movement a force will achieve is dependent on the mass of the object getting
moved. For example, to move an object up at an acceleration of 10 meters per second, the
following function call should be used.

1l1ApplyImpulse(11GetMass() * <0,0,10>, FALSE);

Multiply the desired velocity, measured in meters per second, by the mass of the object.
The above call will only apply a once-time impulse. Gravity will quickly overcome this force
and the object will fall back to the ground. To apply a constant force, use the L 1SetForce
function call.

l1SetForce(<0,0,9.8*11GetMass () >, FALSE) ;

The above function call would set a constant force equal to 9.8 meters per second up-
ward. This exactly counters the force of gravity, which has an acceleration of -9.8 meters per
second. Another useful function call is to stop an object already in motion. This can be done
with the following line of code.

167

168

Introduction to Linden Scripting Language for Second Life

1l1ApplyImpulse (-11GetMass () *11GetVel () , FALSE) ;
This line of code obtains the object's current velocity and applies the exact force neces-
sary to stop the object.

Rotational force can also be applied to objects. This will cause the object to spin.
The 1llApplyRotationalImpulse function call is used to do this. The
llApplyRotationalImpulse has the following signature.

11ApplyRotationalImpulse (vector force, integer local) ;

The force vector specifies how much rotational force to apply in x, y and z-coordinates. If
the local parameter is true, the rotation is relative to the object's current rotation.

Second Life Vehicles

The example car is a bright-red two seater convertible. The car is not a true convertible
because it does not convert. Itis always in top-down mode. Because it never rains in Second
Life, this is not a problem! The little red sports car is shown in Figure 10.3.

Figure 10.3: A Gar in Second Life

§ secondlife
File Edit View World Tools

Hntp__-'___f__) Encogia 163, 158, 505 (PG) - Enc

P
Sl 3

moiacTve | LASER
MR Dawy £ QL?!.I}":!:N T

o (@&l - |
ristory . [Gesties v
icate’ | Chat Fly Snapshot Seareh Bluld Mini=Map Map: Inventony

W o= L W Second Life <L Fw) 757 AM

Chapter 10: Physical Movement and Vehicles

The next few sections will explain different aspects of the car, and how it was constructed
and scripted.

Vehicle Materials

All prims in Second Life have a material. The following materials are supported in Sec-
ond Life: stone, metal, glass, wood, flesh, plastic and rubber. Materials affect the mass and
friction of the vehicle. The majority of prims in Second Life are made of wood. This is be-
cause wood is the default material. Material type is specified in the object window. Figure
10.4 shows the material type being set.

Figure 10.4: Setting the Material Type

optignsaT

tiless

Es: [Texture © [Eontent

History: Click here to chat.

5 Persnnarzatmn

Material types are very important for vehicles in Second Life. The material type for the
tires of the car is of particular importance. Which of the above material types should be
chosen for the tires? Rubber may seem the logical choice. Rubber would create too much
friction. Remember, that in the simplistic physics of Second Life, the tires do not really turn.
They appear to turn, due to a trick used later in this example. But they are not really turning.
Imagine a parked car being pushed along the ground. If the parking brake is on, that car will
not move as efficiently. The rubber would burn and the car would merely bump along. This
is what happens when the tires are made of rubber in Second Life. The car barely moves.

169

170

Introduction to Linden Scripting Language for Second Life

The material of choice is surprising. It is the material with the least friction - glass. Any
part of the vehicle that comes into contact with the ground should be made of glass. Durabil-
ity is not an issue with a prim! Glass wheels are the norm in Second Life. Don't think of the
materials as the actual materials. Rather, think of the material types as specifying the amount
of friction the prim will cause.

The Root Prim

The car, like any other object in Second Life, consists of several primitives. However,
not all primitives are equal. The most important primitive, or prim, is the root prim. When
an object is selected, the root prim is outlined in yellow. The root prim is a very important
concept for vehicles.

The root prim is the last prim selected when the vehicle was linked together. Therefore,
it is very easy to accidentally change the root prim when new prims are being added to the
object. For example, consider adding a bumper sticker to the car. Consider if the car was
selected, the bumper sticker shift-selected and a link created. The bumper sticker would now
be a part of the car object. However, the bumper sticker would now be the root prim! The
bumper sticker was the last prim selected, so it is now the root prim. This would prevent the
car from functioning properly. This is because the car is designed for the driver's seat to be
the root prim.

The correct way to add the bumper sticker to the car would be to do this procedure in
reverse. First, select the bumper sticker. Then shift-select the car and create the link. Now
the car is the last object selected and the root prim will not change.

The root primitive is critical to a vehicle because the root prim is where the main vehicle
script resides. Think of the root prim as the motor for the vehicle. It is the root prim that is
moving, everything else is only attached to the root prim. It is also convenient if the driver
sits on the root prim. This is why most vehicles in Second Life always make the root prim
the driver's seat.

It also makes vehicle creation considerably easier if the root prim is at zero rotation in all
three directions. At the very least, the root prim should only be rotated in 90-degree intervals
in the three dimensions.

The root prim must be made a physical object for the vehicle to operate. Normally,
this is done in code using a call to 11SetStatus. However, being physical imposes an
important limitation on vehicles. Physical objects in Second Life can contain no more than
31 prims. Because of this, no vehicle can contain more than 31 prims. If prim number 32 is
added, the vehicle will stop.

The root prim is where the main car script resides. The car script can be seen in Listing
10.2.

Chapter 10: Physical Movement and Vehicles 171

Listing 10.2: Main Car Script for the Root Prim (Gar.Isl)

float forward power = 15; //Power used to go forward (1 to 30)

float reverse power
float turning ratio

-15; //Power ued to go reverse (-1 to -30)
2.0; //How sharply the vehicle turns. Less

is more sharply. (.1 to 10)
string sit message = "Ride"; //Sit message
string not owner message = "You are not the owner of this vehicle

n.
. 7

default

{

//Not owner message

state entry()

{

11SetSitText (sit _message) ;
// forward-back,left-right,updown

11SitTarget (<0.2,0,0.45>, ZERO ROTATION) ;

l1SetCamerakEyeOffset (<-8, 0.0, 5.0>);
l1SetCameraAtOffset (<1.0, 0.0, 2.0>);

llPreloadSound ("car_start");
llPreloadSound ("car_run") ;

//car
11SetVehicleType (VEHICLE TYPE CAR) ;
11SetVehicleFloatParam (

VEHICLE ANGULAR DEFLECTION EFFICIENCY, 0.2);

l1SetVehicleFloatParam

VEHICLE LINEAR DEFLECTION EFFICIENCY, 0.80);

l1SetVehicleFloatParam

VEHICLE ANGULAR DEFLECTION TIMESCALE, 0.10);

l1SetVehicleFloatParam

VEHICLE LINEAR DEFLECTION TIMESCALE, 0.10);

l1SetVehicleFloatParam

VEHICLE LINEAR MOTOR TIMESCALE, 1.0);

l1SetVehicleFloatParam

VEHICLE LINEAR MOTOR DECAY TIMESCALE, 0.2);

l1SetVehicleFloatParam

VEHICLE ANGULAR MOTOR_TIMESCALE, 0.1);

l1SetVehicleFloatParam

VEHICLE ANGULAR _MOTOR_DECAY TIMESCALE, 0.5);

1l1SetVehicleVectorParam (

VEHICLE LINEAR FRICTION TIMESCALE, <1000.0, 2.0,

1l1SetVehicleVectorParam (

1000.0>) ;

172 Introduction to Linden Scripting Language for Second Life

VEHICLE ANGULAR FRICTION TIMESCALE, <10.0, 10.0, 1000.0>) ;
l11SetVehicleFloatParam (

VEHICLE VERTICAL ATTRACTION_ EFFICIENCY, 0.50) ;
l11SetVehicleFloatParam (

VEHICLE VERTICAL ATTRACTION TIMESCALE, 0.50) ;

}

changed (integer change)

{

if (change & CHANGED_ LINK)

{

key agent = 1llAvatarOnSitTarget () ;
if (agent)
{
if (agent != 11GetOwner())
{
11Say (0, not owner message) ;
11UnSit (agent) ;
11PushObject (agent, <0,0,50>,
ZERO_VECTOR, FALSE) ;

}

else

{

11TriggerSound ("car_start",1);

l1MessageLinked (LINK ALL CHILDREN , O,
"WHEEL DRIVING", NULL_KEY);

1lsleep(.47;
IISetStatus(STATUS_PHYSICS, TRUE) ;
11Sleep(.1) ;

11RequestPermissions (agent,
PERMISSION_ TRIGGER_ANIMATION | PERMISSION TAKE CONTROLS) ;

llLoopSound("car_run",1) ;

}

else

{

l1StopSound () ;

IISetStatus(STATUS_PHYSICS, FALSE) ;
11Sleep(.4) ;

Chapter 10: Physical Movement and Vehicles 173

11ReleaseControls () ;
1l1lTargetOmega(<0,0,0>,PI,0) ;

11ResetScript () ;

run_time permissions(integer perm)

{

if (perm)

11TakeControls (CONTROL _FWD | CONTROL BACK |
CONTROL_DOWN | CONTROL UP | CONTROL_ RIGHT |
CONTROL_LEFT | CONTROL ROT RIGHT | CONTROL_ROT_ LEFT, TRUE, FALSE);

}
}

control (key id, integer level, integer edge)

{

integer reverse=1l;
vector angular_ motor;

//get current speed
vector vel = 11GetVel() ;
float speed = 1llVecMag(vel) ;

//car controls
if (level & CONTROL_FWD)

11SetVehicleVectorParam (
VEHICLE LINEAR MOTOR DIRECTION, <forward_power,0,0>);
reverse=1;
if (level & CONTROL_BACK)
1l1SetVehicleVectorParam (

VEHICLE LINEAR MOTOR DIRECTION, <reverse power,0,0>);
reverse = -1;

if (level & (CONTROL RIGHT|CONTROL ROT RIGHT))

{
}

angular motor.z -= speed / turning ratio * reverse;

174 Introduction to Linden Scripting Language for Second Life

if (level & (CONTROL LEFT|CONTROL ROT LEFT))

{
}

11SetVehicleVectorParam (
VEHICLE ANGULAR MOTOR DIRECTION, angular_motor);

}

angular motor.z += speed / turning ratio * reverse;

The following sections explain the various parts of the car script.

Obtaining Permission

The car will be driven in a similar way to how an avatar walks. Cursor keys will turn and
move it forward and backward. However, for a script to do this, it must get permission from
the avatar. This is done with the run time permissions eventhandler. This event
handler is shown here.

run_time permissions(integer perm)

if (perm)
11TakeControls (CONTROL _FWD | CONTROL BACK |
CONTROL_DOWN | CONTROL UP | CONTROL RIGHT |
CONTROL_LEFT | CONTROL ROT RIGHT |
CONTROL_ROT_LEFT, TRUE, FALSE);

The same event handler is used for all of the vehicles in this chapter.

Sitting Down as the Driver

When an avatar sits down to drive the car, the car must perform a setup before the avatar
can begin driving the car. The changed event handler is called when an avatar sits on an
object. First, the changed event handler checks to see whether it was called because an ob-
ject was linked to it. In this case, it was the avatar that was linked to the car object.

changed (integer change)

{

if (change & CHANGED_ LINK)

{

Chapter 10: Physical Movement and Vehicles 175

Next, the script checks to see what avatar sat on it. If it was an avatar that sat on the car,
the car checks to see whether the avatar is the car's owner.

key agent = 1llAvatarOnSitTarget () ;

if (agent)

{
if (agent != 11GetOwner())
{

Ifit is not the car's owner, the car informs the avatar that they are not allowed to drive the
car. The avatar is pushed away.

11Say (0, not owner message) ;

11UnSit (agent) ;

11PushObject (agent, <0,0,50>,
ZERO_VECTOR, FALSE) ;

}

If it is the car's owner, it is time to set up the car so that it can be driven. First, the
car_ start sound is played. The car is then enabled as a physical object. A physical
object can be pushed by external or internal forces. Permission to take the controls is then
requested. Finally, the car run sound is looped.

else
{
11TriggerSound ("car start",1l);
11Sleep(.4);
IISetStatuS(STATUS_PHYSICS, TRUE) ;
11Sleep(.1);

11RequestPermissions (agent,
PERMISSION TRIGGER ANIMATION | PERMISSION TAKE CONTROLS) ;

llLoopSound("car run",1) ;

}

If the avatar is getting up, stop the sound and turn off physics. Controls are released. If
physics are left on, any avatar who bumped into the parked car would move it.

else

{

11StopSound () ;

l1SetStatus (STATUS PHYSICS, FALSE) ;

11Sleep(.1);
11Sleep(.4);
11ReleaseControls() ;

llTargetOmega(<0,0,0>,PI,0) ;

176

Introduction to Linden Scripting Language for Second Life

11ResetScript () ;

The callto 11 TargetOmega is very important. Without this call, the parked car will
sometimes begin to rotate. This is a strange and undesirable effect.

Controlling the Car

The control event handler is called when the user interacts with the control keys. The
control keys are the cursor keys and page up/down, as well as other control keys. The car
will only use the cursor keys.

Vehicles in Second Life are moved by two motors; the linear motor and the angular mo-
tor. The linear motor can move the vehicle in any direction in the x, y and z coordinate
planes. The angular motor can rotate the object in any of the x, y and z coordinate planes.
The car uses both motors. The linear motor moves the car forwards and backwards. The
angular motor turns the car.

The control event handler begins by setting up some variables that will be needed by
the handler. Because cars turn differently when in reverse, a flag is required to indicate if we
are in reverse. Also, a variable is created to hold the direction of the angular motor.

control (key id, integer level, integer edge)
integer reverse=1l;
vector angular motor;

The current speed is obtained. This will be used with turning. Cars need to be in motion
to turn.

//get current speed
vector vel = 11GetVel() ;
float speed = 1llVecMag(vel) ;

Next, each of the relevant controls will be checked. The first control to be checked is the
forward control. When the user presses forward, the linear motor is used to apply the force
to move the car forward. Note also that the car is moving forward by setting the reverse
variable to one.

//car controls
if (level & CONTROL_FWD)

11SetVehicleVectorParam (
VEHICLE LINEAR MOTOR DIRECTION, <forward_power,0,0>);
reverse=1;

Chapter 10: Physical Movement and Vehicles 177

If the user presses back, apply power in the opposite direction. Note also that the car has
been put in reverse by setting the reverse variable to -1.

if (level & CONTROL_BACK)

1l1SetVehicleVectorParam (
VEHICLE LINEAR MOTOR DIRECTION, <reverse_power,0,0>);
reverse = -1;

For a right turn, rotate the car in the z-coordinate. Rotate by the specified angle and take
into account whether the car is going in reverse.

if (level & (CONTROL_ RIGHT |CONTROL_ROT RIGHT))

{

angular motor.z -= speed /
turning ratio * reverse;

}

For a left turn, rotate the car in the z-coordinate. Rotate by the specified angle and take
into account whether the car is going in reverse.

if (level & (CONTROL_ LEFT|CONTROL ROT LEFT))

{

angular motor.z += speed /
turning ratio * reverse;

}

Now the angular motor can be set.

l1SetVehicleVectorParam (
VEHICLE ANGULAR MOTOR DIRECTION, angular_motor);

The control event handler in the script is different for each vehicle type. This is
because each vehicle handles differently. However, each vehicle shares some similarity in
the control event handler.

Initializing the Car

The state entry event handler initializes the car. Initialization is very different for
each vehicle type. The car begins by setting the sit text and sit target.

state entry()

{
11SetSitText (sit message) ;
// forward-back,left-right,updown
11SitTarget (<0.2,0,0.45>, ZERO_ROTATION) ;

178

Introduction to Linden Scripting Language for Second Life

Next, the camera is placed. The camera is offset behind and above the car. Now the
camera looks into the car.

l1SetCamerakEyeOffset (<-8, 0.0, 5.0>);
ll1SetCameraAtOffset (<1.0, 0.0, 2.0>);

The two sounds that are used are preloaded. This prevents any pause when the sounds
are played for the first time.

llPreloadSound("car start");
llPreloadSound("car run");

Next the vehicle parameters are set. The first is the vehicle type, which is set by calling
l11SetVehicleType. Valid values for 11SetVehicleType are listed in Table
10.1.

Table 10.1: Vehicle Types

Vehide Type Purpose

VEHICLE_TYPE_NONE Not a vehicle.

VEHICLE_TYPE_SLED Simple vehicle that bumps along the ground, has a
tendency to move along its local x-axis.

VEHICLE_TYPE_CAR Vehicle that bounces along the ground but requires
motors to be driven from external controls or other
source.

VEHICLE_TYPE_BOAT Hovers over water with a great deal of friction and
some angular deflection.

VEHICLE_TYPE_AIRPLANE [Uses linear deflection for lift, no hover, and must bank
to turn.

VEHICLE_TYPE_BALLOON [Hover, and friction, and no deflection.

Additionally vehicle parameters are set using the 11SetVehicleFloatParam,
ll1SetVehicleVectorParam and 1llSetVehicleRotationParam
function calls. Table 10.2 summarizes the values that can be set with the
ll1SetVehicleFloatParam.

Chapter 10: Physical Movement and Vehicles

Table 10.2: Floating Point Vehicle Parameters

Parameter

Purpose

VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY

Value between 0 (no de-
flection) and 1 (maximum
strength).

VEHICLE_ANGULAR_DEFLECTION_TIMESCALE

Exponential timescale for the
vehicle to achieve full angular
deflection.

VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE

Exponential timescale for the
angular motor's effectiveness
to decay toward zero.

VEHICLE_ANGULAR_MOTOR_TIMESCALE

Exponential timescale for
the vehicle to achieve its full
angular motor velocity.

VEHICLE_BANKING_EFFICIENCY

Value between -1 (leans out
of turns), 0 (no banking), and
+1 (leans into turns).

VEHICLE_BANKING_MIX

Value between 0 (static bank-
ing) and 1 (dynamic banking).

VEHICLE_BANKING_TIMESCALE

Exponential timescale for the
banking behavior to take full
effect.

VEHICLE_BUOYANCY

Value between -1 (double-
gravity) and 1 (full anti-grav-

ity).

VEHICLE_HOVER_HEIGHT

Height at which the vehicle
will try to hover.

VEHICLE_HOVER_EFFICIENCY

Value between 0 (bouncy)
and 1 (critically damped)
hover behavior.

VEHICLE_HOVER_TIMESCALE

The period of time for the
vehicle to achieve its hover
height.

VEHICLE_LINEAR_DEFLECTION_EFFICIENCY

Value between 0 (no de-
flection) and 1 (maximum
strength).

VEHICLE_LINEAR_DEFLECTION_TIMESCALE

An exponential timescale
for the vehicle to redirect its
velocity along its x-axis.

179

180 Introduction to Linden Scripting Language for Second Life

VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE An exponential timescale for
the linear motor's effective-
ness to decay toward zero.

VEHICLE_LINEAR_MOTOR_TIMESCALE An exponential timescale for
the vehicle to achieve its full
linear motor velocity.

VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY Value between 0 (bouncy)
and 1 (critically damped)
attraction of vehicle z-axis to
world z-axis (vertical).

VEHICLE_VERTICAL_ATTRACTION_TIMESCALE An exponential timescale for
the vehicle to align its z-axis
to the world z-axis (vertical).

The values that can be set with 11SetVehicleVectorParam function are sum-
marized in Table 10.3.

Table 10.3: Vector Vehicle Parameters

Parameter Purpose

VEHICLE_ANGULAR_FRICTION_TIMESCALE The vector of timescales for expo-
nential decay of angular velocity
about the three vehicle axes.

VEHICLE_ANGULAR_MOTOR_DIRECTION The angular velocity that the ve-
hicle will try to achieve.
VEHICLE_LINEAR_FRICTION_TIMESCALE The vector of timescales for ex-

ponential decay of linear velocity
along the three vehicle axes.

VEHICLE_LINEAR_MOTOR_DIRECTION The linear velocity that the vehicle
will try to achieve.
VEHICLE_LINEAR_MOTOR_OFFSET The offset from the center of mass

of the vehicle where the linear mo-
tor is applied.

Chapter 10: Physical Movement and Vehicles 181

The settings for the vehicle parameters of the car will now be reviewed. First, the vehicle
type is set to car. Angular deflection is the tendency of a vehicle to move in certain directions.
For example, a car will not tend to move in the z-coordinate (up and down). The angular
deflection efficiency determines how effective angular deflection is. A value of 0.2 specifies
angular deflection at 20%. This allows the car to turn fairly easily.

118etVehicleType(VEHICLE_TYPE_CAR);
l1SetVehicleFloatParam
VEHICLE ANGULAR DEFLECTION EFFICIENCY, 0.2);

A value of 0.8 specifies that linear deflection has 80% power. This means it takes more
effort for the car to change its linear velocity.

l1SetVehicleFloatParam
VEHICLE LINEAR DEFLECTION EFFICIENCY, 0.80) ;

It takes the car one tenth of a second for both linear and angular deflection to com-
mence.

l1SetVehicleFloatParam (
VEHICLE ANGULAR DEFLECTION TIMESCALE, 0.10) ;
l1SetVehicleFloatParam (
VEHICLE LINEAR DEFLECTION TIMESCALE, 0.10) ;

It takes one second for the linear motor to reach full power.

l1SetVehicleFloatParam(
VEHICLE LINEAR MOTOR TIMESCALE, 1.0);

The linear motor will drop off in one fifth of a second. The car will not coast well.

l1SetVehicleFloatParam
VEHICLE LINEAR MOTOR DECAY TIMESCALE, 0.2);

The angular motor will reach full power in one tenth of a second.

l1SetVehicleFloatParam
VEHICLE ANGULAR MOTOR TIMESCALE, 0.1);

The angular motor will drop off in 0.5 seconds. The car will stop turning fairly quickly
when the user lets up on the control.

l1SetVehicleFloatParam(
VEHICLE ANGULAR MOTOR DECAY TIMESCALE, 0.5);

Friction affects the car only in the y-coordinate, which is how the car moves forwards and
backwards. The car can quickly fall or turn.

l1SetVehicleVectorParam (
VEHICLE LINEAR FRICTION TIMESCALE, <1000.0, 2.0, 1000.0>) ;

The car rotates fairly easily in the z-coordinate, but x and y are more difficult to rotate
in.

182

Introduction to Linden Scripting Language for Second Life
11SetVehicleVectorParam (
VEHICLE ANGULAR FRICTION TIMESCALE, <10.0, 10.0, 1000.0>);

A car should always stay right-side-up. The vertical attraction feature allows this.

11SetVehicleFloatParam (

VEHICLE VERTICAL ATTRACTION EFFICIENCY, O. 50) ;
11SetVehicleFloatParam (

VEHICLE VERTICAL ATTRACTION TIMESCALE, O. 50) ;

These values work well for a car. However, they will be considerably different for a boat
or helicopter.

Who Sits Where

The car allows for one passenger, in addition to the driver. Additional passengers will be
ejected. Figure 10.5 shows the car with a driver and one passenger.

Figure 10.5: A Gar with Two Passengers

Extra seats must be provided to allow additional people, other than the driver to
ride in a vehicle. The passenger seat has a simple 11SitTarget function call in its
state_ entry event handler. The passenger seat can be seen here.

Chapter 10: Physical Movement and Vehicles

Listing 10.3: Car Passenger Seat (CarSeat.Isl)

default
{
state entry ()
{
11SitTarget (<0.2,0,0.45>, ZERO ROTATION) ;
}

The driver's seat should be the root prim, which is the last prim selected. The passen-
ger's seat should be the second to the last prim selected. A third script is also required, to
disallow further seating. The third to the last prim selected should contain a script that pre-
vents the user from sitting down. Such a script can be seen in Listing 10.4.

Listing 10.4: Can't Sit Here (DontSitHere.lIsl)

default
{
state entry ()
{
11SitTarget (<0.2,0,0.45>, ZERO ROTATION) ;
}
changed (integer change)
{
if (change & CHANGED LINK)
{
key agent = 1llAvatarOnSitTarget () ;
if (agent)
{
11UnSit (agent) ;
118ay (0, "Sorry, this vehicle is full.");
}
}
}

The “don't sit here” script is needed because an avatar will try to choose a seat in the
following order.

¢ If the exact prim selected can be sat on, choose it

e Next, try to sit on the root prim

e Next, try to sit on the prim selected just before the root prim

¢ Next, try to sit on the prim selected two before the root prim and so on

Because of this, the “chain” of sit targets must be broken just beyond the last passenger
seat. The "do not sit here" script specifies a sit target in the state entry, as for the
passenger seat:

183

184

Introduction to Linden Scripting Language for Second Life

default
{
state entry()
{
11SitTarget (<0.2,0,0.45>, ZERO ROTATION) ;
}

Whenever the changed event handler is called, the avatar should be ejected with the
11UnSit function call.

changed (integer change)

{
if (change & CHANGED_ LINK)
{
key agent = 1llAvatarOnSitTarget () ;
if (agent)
{
11UnSit (agent) ;
11Say (0, "Sorry, this wvehicle is full.");
}
}
}

This prevents avatars from sitting on unintended parts of the vehicle.

Turning the Wheels

To appear more realistic, the car turns its wheels when in motion. There are several
ways that this is commonly done in Second Life vehicles. The method used for this car is
shown in Listing 10.5.

Listing 10.5: Car Wheel (WheelScript.Isl)

default

{

state entry()

{
}

timer ()

{

ll1SetTimerEvent (0.20) ;

vector vel = 11GetVel() ;

float speed = 1llVecMag(vel) ;

if (speed > 0)

{
l1SetTextureAnim (ANIM ON | SMOOTH | LoOoP, 0, 0, O,
0, 1, speed*0.5);

Chapter 10: Physical Movement and Vehicles

else
ll1SetTextureAnim (ANIM ON | SMOOTH | LOOP | REVERSE,
0, 0, 0, 0, 1, speed*0.5);

The above script is contained in all four wheels of the car. The script works by rotat-
ing the texture of the wheel in one direction when the car is moving forward, and in an-
other direction when moving backwards. The speed of the car can be obtained by calling
11GetVel, as seen here.

vector vel = 11GetVel() ;
float speed = 1llVecMag(vel) ;
if (speed > 0)

l1SetTextureAnim (ANIM ON | SMOOTH | Loop, 0, 0, O, 0O, 1,
speed*0.5) ;
else
ll1SetTextureAnim (ANIM ON | SMOOTH | LOOP | REVERSE, 0, O,
0, 0, 1, speed*0.5);

The hubcaps must be rotated too. However, they need to be rotated along a different
coordinate than the tires. Other than that, their script is identical to the wheel script. The
hubcap script is shown in Listing 10.6.

Listing 10.6: Rotate the Hubcaps (WheelScript.Isl)

default

{

state entry()

{
}

timer ()

{

ll1SetTimerEvent (0.20) ;

vector vel = 11GetVel() ;

float speed = 1llVecMag(vel) ;

if (speed > 0)

{
llSetTextureAnim (ANIM ON | SMOOTH | LOOP, 0, 0, O,
0, 1, speed*0.5);

185

186

Introduction to Linden Scripting Language for Second Life

else
ll1SetTextureAnim (ANIM ON | SMOOTH | LOOP | REVERSE,
0, 0, 0, 0, 1, speed*0.5);

There are quite a few parts to the car. Unlike previous examples, one script can not
handle the entire object. Individual scripts are needed in several of the prims that make up
the car. Some parts of the scripts will be reused in other vehicles. However, the other ve-
hicles in this chapter are either air or sea based. This introduces some differences from the
land based car.

Summary

Objects in Second Life can be moved either physically or non-physically. Chapter 9
showed how to move objects non-physically. This chapter showed how to move objects phys-
ically. When objects are moved physically, force is applied to the object to cause movement.

Before force can be applied to an object, the object must be marked as physical. This can
be done in two ways. First, the physical checkbox can be clicked in the object properties.
Second, the physical property of an object can be changed programatically.

There are many attributes of objects that can be altered as a script runs. A script can
resize objects, change textures or alter many other attributes of the object. The next chapter
will show how scripts can be used to alter objects.

Chapter 10: Physical Movement and Vehicles 187

188 Introduction to Linden Scripting Language for Second Life

Chapter 11: Changing Object Attributes

CHAPTER 11: CHANGING OBJECT ATTRIBUTES

¢ Changing a Primitive's Attributes
¢ Reading a Primitive's Attributes
¢ Modifying a Linked Primitive's Attributes

It is also possible to modify a primitive that is either running the active script, or linked to
the active script. This allows any of the attributes, seen when you edit a prim, to be modified
by the script. These attributes allow you to change such things as the color, texture and size
of a prim as well as many other attributes.

To set attributes for the prim that Tholds the script, use the
ll1SetPrimitiveParams function. To set the attributes for a prim that is linked,
use the 11SetLinkPrimitiveParams function.

Using lISetPrimitiveParams
The signature for the 11SetPrimitiveParams is very simple, as seen here.
l1SetPrimitiveParams (1list rule)

Do not let the somewhat simple format of the signature fool you. The

llSetPrimitiveParams function is one of the most complex functions in the Lin-

den Scripting Language. The list that is passed in defines what attributes are to be set. For
example, to set the color of a prim, the following call would be used.

ll1SetPrimitiveParams([PRIM COLOR, ALL SIDES, <1, 1, 1>, 0.75])

The above call sets all sides of the prim to white. The value <1, 1, 1> specifies white
because the value one specifies full intensity for red, green and blue. The values for red,
green and blue can range between zero and one. Using these values allows any color to be
specified. The value 0.75 specifies the transparency of the prim. A value of zero is completely
non-transparent, where a value of one is invisible.

The format of the list is a constant, that defines what attribute to set, followed by what-
ever additional values that constant is defined to deal with. In the above example, the
PRIM COLOR constant is capable of handling three parameters. As a result, the list con-
tains four values.

It is also possible to set two attributes with one callto 11SetPrimitiveParams.
Simply concatenate two constants, and their parameters, together. For example, to set both
the color and size of a prim, use the following function call.

189

190 Introduction to Linden Scripting Language for Second Life
llSetPrimitiveParams([PRIM COLOR, ALL SIDES, <1, 1, 1>, 0.75],
[PRIM SIZE, < 10, 10, 10>])

There are many different constants that can be used with the list. Table 11.1 summarizes
all of the constants that can be used with 11SetPrimitiveParams.

Chapter 11: Changing Object Attributes

Table 11.1: Constants for liSetPrimitiveParams

Constant Name Description Parameter(s) Example Rule
PRIM_BUMP_ Sets bumpmapping | integer face, [PRIM_BUMP_
SHINY and shininess of a | PRIM_SHINY_xxx, | SHINY, 2, PRIM_
face PRIM_BUMP_xxx [SHINY_LOW,
PRIM_BUMP_
GRAVEL]
PRIM_COLOR Sets color and alpha | integer face, vector |[PRIM_COLOR, 1,
of a face color, float alpha <1, 0, 0>, 0.75]

PRIM_FLEXIBLE

Toggles flexible
property and at-
tributes: softness,
gravity, drag (fric-
tion), wind, tension,
and force.

boolean flexible, in-
teger softness, float
gravity, float friction,
float wind, float ten-
sion, vector force

[PRIM_FLEXIBLE,
TRUE, 2, 0.3, 2.0,
0.0, 1.0, <0, 0, 0]

PRIM_FULL-
BRIGHT

Sets full bright of a
face on or off.

integer face, bool-
ean on

[PRIM_FULL-
BRIGHT, ALL_
SIDES, TRUE]

PRIM_MATERIAL

Sets material of the
prim

PRIM_MATERIAL _
XXX

[PRIM_MATERIAL,
PRIM_MATERIAL _
RUBBER]

PRIM_PHANTOM

Sets phantom prop-
erty of an object

boolean phantom

[PRIM_PHANTOM,
TRUE]

PRIM_PHYSICS Sets physics prop- | boolean physics [PRIM_PHYSICS,
erty of an object TRUE]

PRIM_POINT_ Toggles light prop- | boolean on, vector | [PRIM_POINT_

LIGHT erty and attributes: | color, float intensity, | LIGHT, TRUE, <1,
color, intensity, float radius, float 1, 1>, 1.0, 10.0,
radius, and falloff. falloff 0.75]

PRIM_POSITION

Moves object to

vector position

[PRIM_POSITION,

position. <128, 128, 40>]
PRIM_ROTATION Sets the rotation of | rotation rot [PRIM_ROTATION,
the object <0,0,0, 1>]

PRIM_SIZE

Sets the scale of
an object (Between
<0.01,0.01,0.01>
and <10,10,10>)

vector size

[PRIM_SIZE, <4, 3,
0.1>]

REZ

PRIM_TEMP_ON_

Sets temporary on
rez property of an
object

boolean temp_on_
rez

[PRIM_TEMP_ON_
REZ, TRUE]

191

192 Introduction to Linden Scripting Language for Second Life

mapping mode,
either PRIM_TEX-
GEN_DEFAULT or
PRIM_TEXGEN_
PLANAR.

type

PRIM_TYPE Sets the basic prim | See next table See next table
type; will unsit all
avatars on object.

PRIM_TEXGEN Sets the texture integer face, integer | [PRIM_TEXGEN,

ALL_SIDES,
PRIM_TEXGEN_
DEFAULT]

PRIM_TEXTURE

Sets the texture
properties of a face

integer face, string
name, vector
repeats, vector off-
sets, float rotation

[PRIM_TEXTURE,
0, "grass", <2,8,0>,
<.5,.5,0>, Pl/4]

Several of the constants require additional constants to be specified. For example, the
PRIM TYPE constant allows the type of primitive to be changed. For example, you could

change a box to a sphere. Table 11.2 summarizes all of the primitive types that can be speci-
fied, as well as their optional parameters.

Table 11.2: PRIM_TYPE Constants

Chapter 11: Changing Object Attributes

RUS

vector cut, float
hollow, vector twist,
vector holesize,
vector topshear,
vector profilecut,
vector taper_a, float
revolutions, float
radiusoffset, float
skew

Constant Name Type Parameter(s) Example rule
PRIM_TYPE_BOX | Box integer holeshape, |[PRIM_TYPE,
vector cut, float PRIM_TYPE_BOX,
hollow, vector twist, |0, <0.0, 1.0, 0.0>,
vector taper_b, vec- | 0.0, <0.0, 0.0, 0.0>,
tor topshear <1.0, 1.0, 0.0>,
<0.0, 0.0, 0.0>]
PRIM_TYPE_CYL- | Cylinder integer holeshape, [PRIM_TYPE,
INDER vector cut, float PRIM_TYPE_CYL-
hollow, vector twist, | INDER, 0, <0.0,
vector taper_b, vec- | 1.0, 0.0>, 0.0, <0.0,
tor topshear 0.0, 0.0>,<1.0, 1.0,
0.0>, <0.0, 0.0,
0.0>]
PRIM_TYPE_ Prism integer holeshape, [PRIM_TYPE,
PRISM vector cut, float PRIM_TYPE_
hollow, vector twist, | PRISM, 0, <0.0,
vector taper_b, vec- | 1.0, 0.0>, 0.0, <0.0,
tor topshear 0.0, 0.0>, <0.0, 0.0,
0.0>, <0.0, 0.0,
0.0>]
PRIM_TYPE_ Sphere integer holeshape, |[[PRIM_TYPE,
SPHERE vector cut, float PRIM_TYPE_
hollow, vector twist, | SPHERE, 0, <0.0,
vector dimple 1.0, 0.0>, 0.0, <0.0,
0.0, 0.0>, <0.0, 1.0,
0.0>]
PRIM_TYPE_TO- Torus integer holeshape, |[[PRIM_TYPE,

PRIM_TYPE_TO-
RUS, 0, <0.0, 1.0,
0.0>, 0.0, <0.0, 0.0,
0.0>, <1.0, 0.25,
0.0>, <0.0, 0.0,
0.0>, <0.0, 1.0,
0.0>, <0.0, 0.0,
0.0>, 1.0, 0.0, 0.0]

193

194

Introduction to Linden Scripting Language for Second Life

PRIM_TYPE_
TUBE

Tube

integer hole-
shape, vector cut,
float hollow, vector
twist, vector holesize,
vector topshear, vec-
tor profilecut, vector
taper_a, float revolu-
tions, float radiusoff-
set, float skew

[PRIM_TYPE,
PRIM_TYPE_TUBE,
0, <0.0, 1.0, 0.0>, 0.0,
<0.0, 0.0, 0.0>, <1.0,
0.25, 0.0>, <0.0, 0.0,
0.0>, <0.0, 1.0, 0.0>,
<0.0, 0.0, 0.0>, 1.0,
0.0, 0.0]

PRIM_TYPE_
RING

Ring

integer hole-
shape, vector cut,
float hollow, vector
twist, vector holesize,
vector topshear, vec-
tor profilecut, vector
taper_a, float revolu-
tions, float radiusoff-
set, float skew

[PRIM_TYPE,
PRIM_TYPE_RING,
0, <0.0, 1.0, 0.0>, 0.0,
<0.0, 0.0, 0.0>, <1.0,
0.25, 0.0>, <0.0, 0.0,
0.0>, <0.0, 1.0, 0.0>,
<0.0, 0.0, 0.0, 1.0,
0.0, 0.0]

Note: Some restrictions apply to the above primitive types. Specifically, their parameters

must adhere to:

e repeats - x and y range from 0.0 to 100 (z is ignored).
e offsets - x and y range from -1 to 1 (z is ignored).

e cut/dimple/profilecut - x and y range from 0.0 to 1.0, x must be at least 0.05 smaller
than y (zis ignored).

¢ hollow - ranges from 0.0 (solid) to 0.95 (maximum hollowed).

¢ Twist — only with boxes, cylinders and prisms boxes, cylinders, prisms - ranges from
-0.5 (-180 degree in the edit window) to 0.5 (+180 degree in the edit window) for both x and
y (z is ignored)

¢ Twist with spheres, tubes and torus rings - ranges from -1.0 (-360 degree in the edit
window) to 1.0 (+360 degree in the edit window) for both x and y (z is ignored)

¢ Holesize - x ranges from 0.05 to 1.0, and y ranges from 0.05 (large hole) to 0.50 (no
hole)

e taper_b - ranges from 0.0 to 2.0 for both x and y (z is ignored)

e topshear - ranges from -0.5 to 0.5 for both x and y (z is ignored)

e taper_a - ranges from -1.0 to 1.0 for both x and y (z is ignored)

¢ revolutions - ranges from 1.0 to 4.00

e radiusoffset - depends on holesize y and revolutions

When a hole is specified for a prim, the shape of the hole can also be specified. Table
11.3 lists the constants used to specify the shape of the hole.

Table 11.3: Holeshape Constants

Chapter 11: Changing Object Attributes

Constant

Shape

PRIM_HOLE_DEFAULT

box, circle for cylinder, etc.)

default (matches the prim type: square for

PRIM_HOLE_SQUARE square
PRIM_HOLE_CIRCLE circle
PRIM_HOLE_TRIANGLE triangle

Prims are completely smooth by default. It is possible to create “bumpy” prims. These
have a slight 3D texture on their surface. There are several types of bumps that are allowed.

Table 11.4 lists the bumpy constants.

Table 11.4: Bumpmapping Constants

Constant

Description

PRIM_BUMP_NONE

none: no bump map

PRIM_BUMP_BRIGHT

brightness: generate bump map from highlights

PRIM_BUMP_DARK

darkness: generate bump map from lowlights

PRIM_BUMP_WOQOD woodgrain
PRIM_BUMP_BARK bark
PRIM_BUMP_BRICKS bricks
PRIM_BUMP_CHECKER checker
PRIM_BUMP_CONCRETE concrete
PRIM_BUMP_TILE crustytile

PRIM_BUMP_STONE

cutstone: blocks

PRIM_BUMP_DISKS

discs: packed circles

PRIM_BUMP_GRAVEL gravel

PRIM_BUMP_BLOBS petridish: blobby amoeba-like shapes
PRIM_BUMP_SIDING siding

PRIM_BUMP_LARGETILE stonetile

PRIM_BUMP_STUCCO stucco

PRIM_BUMP_SUCTION

suction: rings

PRIM_BUMP_WEAVE

weave

195

196 Introduction to Linden Scripting Language for Second Life

Shininess is the degree to which a prim reflects light. There are several levels of shini-
ness that can be specified in Second Life. Table 11.5 lists these shininess levels.

Table 11.5: Shininess Constants

Constant Description
PRIM_SHINY_NONE none
PRIM_SHINY_LOW low
PRIM_SHINY_MEDIUM medium
PRIM_SHINY_HIGH high

Prims can be made of a specific material. These material types only matter if the prim is
“physical”. Physical prims were discussed in Chapter 10. Material types define the friction
and mass of an object. The default material type is wood. The majority of the Second Life
world is made of wood as many builders simply leave the material set to wood. The material
types are summarized in Table 11.6.

Table 11.6: Material Constants

Constant Description
PRIM_MATERIAL_STONE stone
PRIM_MATERIAL_METAL metal
PRIM_MATERIAL_GLASS glass
PRIM_MATERIAL_WOOD wood
PRIM_MATERIAL_FLESH flesh
PRIM_MATERIAL_PLASTIC plastic
PRIM_MATERIAL_RUBBER rubber

As you can see, there are a considerable number of options to be used with
ll1SetPrimitiveParams. The tables presented above can provide a quick lookup
for exactly the attribute that you would like to set.

In addition to 11SetPrimitiveParams, there are other functions provided by
the Linden Scripting Language that also use many of the constants defined in the preceding
tables. The function 11GetPrimitiveParams retrieves information about an attri-
bute. The 11SetLinkPrimitiveParam function allows attributes to be set for a
linked prim. These functions will now be described.

Chapter 11: Changing Object Attributes

Using lIGetPrimitiveParams

It is also possible to retrieve information about a prim using the constants defined ear-
lier in this chapter. To do this, use the 11GetPrimitiveParams function. The
1l1GetPrimitiveParams function is shown here.

list llGetPrimitiveParams (list params)

Simply pass 11GetPrimitiveParams a list of the attributes to be obtained. For
example, to retrieve the size of a prim, use the following code.

list size = llGetPrimitiveParams([PRIM SIZE]);

This will store the size to the list named size. To retrieve the size as a vector, use the
following code.

vector v = (vector)llList2String(size,0);
To restore the size of a primitive, using the size list, use the following code.
llSetPrimitiveParams([PRIM SIZE] + size);

So far, all of the operations performed have been on the same prim that contains the
script. It is also possible to set the attributes for linked prims as well. This technique is cov-
ered in the next section.

Using lISetLinkPrimitiveParams

A Second Life object is made up of a collection of prims. These prims are linked together
and are called a link set. The last prim linked becomes the root prim. The root prim is the
primitive whose x, y and z position and rotation values define the position and rotation for the
entire object. Usually, the script for the entire object is placed in the root prim.

The llSetLinkPrimitiveParams function can be used to set at-
tributes for both the root prim, and any linked prims. The signature for the
llSetLinkPrimitiveParams function is shown here.

l11SetLinkPrimitiveParams (integer linknumber, list rules)

As you can see, the signature for 11SetLinkPrimitiveParams is very similar
to l11SetPrimitiveParams. The only difference is that a link number is passed in.
This specifies which member of the link set to set the attributes for. The first element is the
root prim, the second is the second prim after the root prim, and so on.

Setting Attribute Properties

In this section, an example script will be presented that makes use of the
llSetPrimitiveParams function. This script will implement a simple cube that
randomly changes colors every ten seconds. This script is shown in Listing 11.1.

197

198 Introduction to Linden Scripting Language for Second Life

Listing 11.1: Random Color Cube

default
{
state_entry ()
{
11SetTimerEvent (10) ;
1
timer ()
{
float red = 1llFrand (1) ;
float green = 1lFrand (1) ;
float blue = 1lFrand (1) ;
vector color = <red,green,blues>;
l1SetPrimitiveParams([PRIM COLOR, ALL SIDES, color, 1]
)i
1

This script begins by setting a timer event that will occur every ten seconds. Each time
the timer event is called, three random values are generated for red, green and blue. These
components are combined in a vector to produce a color. This color is then applied to the
prim.

In previous chapters functions such as 11SetPos and 11GetPos were pre-
sented to change the position of a primitive. You may be wondering when you should
use a specialized function such as 11SetPos and when you should use the generic
l1SetPrimitiveParams. The choice as yours, as they both accomplish the same
thing. Generally, the specialized versions such as 11SetPos, have slightly higher per-
formance, since a list is not need to be created. However, not all attributes have specialized
accessor functions. For many of the attributes 11SetPrimitiveParams is the only
way to set these attributes.

Summary

This chapter showed how to set the individual attributes of prims. There are many differ-
ent attributes defined for a primitive. Usually these primitives are set when the prim is first
built in Second Life. However, all of these attributes can be set programatically. This is done
using the 11SetPrimitiveParams function.

Chapter 11: Changing Object Attributes

Additionally, the current state of any of these attributes can be obtained using the
ll1GetPrimitiveParams function. The 11SetPrimitiveParmas function
always operates on the prim that contains the current script. It is also possible to use the
l1SetLinkPrimitiveParams function set the attributes for other primitives in the
current link set.

Primitives and objects are not the only items visible in Second Life. Particles are also an
important part of the Second Life world. Particles are simple 2D sprites that have no physi-
cal properties. They are often used for smoke or to make objects shine or glow. The next
chapter will over particles.

199

200 Introduction to Linden Scripting Language for Second Life

Chapter 12: Using Particles

CHAPTER 12: UsING PARTICLES

¢ The Basic Particle Emitter
¢ Creating a Fog Machine
¢ Using a Snow Machine

Any prim in Second Life can emit particles. Particles are 2D sprites emitted from their
prim in definable ways. Particles are not objects in the sense that they can be touched or
count against the land's maximum object count. Particles are generated completely on the
client side, so they do not contribute to in-game lag. However, they can cause some lag to the
client computer viewing them.

Particle emitters are used for a wide range of purposes in Second Life. Some of their
uses include:

¢ Creating insects and leaves in landscaped areas
¢ Creating flashy laser type effects in clubs

¢ Leaving smoke and wave trails behind vehicles
¢ Causing jewelry to sparkle

¢ Smoke from chimneys

¢ Creating explosions

This chapter provides several examples for particle emitters. The first example shows a
basic particle emitter script. This will be the starting point for all other examples.

Basic Particle Emitter

The basic particle emitter script shown in this recipe emits red particles that float up-
ward. The basic particle emitter is designed to be a starting point from which other particle
emitters can be created. Most of the particle emitters in this chapter used the basic particle
emitter as a starting point. The basic particle emitter can be seen in action in Figure 12.1.

201

202

Introduction to Linden Scripting Language for Second Life

Figure 12.1: Basic Particle Emitter

File Edit View ‘World Tools Help @) 0 Encc

INVRECE]

lick here to see what has been said

Gommiinicate’ (Chat Fy
A EE £ | & secondlife

Snapshot

6, 32 (FG) - Enco

Search

6:04 AMPST @ L§$52,432

S (@ Talk

Blild Mini=Map

< BB, B 20dAM

The script for the basic particle emitter can be seen in Listing 12.1.

Listing 12.1: Basic Particle Emitter

generalParticleEmitterOn ()

{
llParticleSystem([
PSYS PART FLAGS , 0
//| PSYS PART BOUNCE MASK
| PSYS PART WIND MASK
| PSYS PART INTERP COLOR_MASK
end

| PSYS PART INTERP SCALE MASK
to end
| PSYS PART FOLLOW SRC MASK

//Bounce on object's z-axis
//Particles are moved by wind
//Colors fade from start to

//Scale fades from beginning

//Particles follow the emitter

| PSYS PART FOLLOW VELOCITY MASK//Particles are created at the

velocity of the emitter
//| PSYS_ PART TARGET POS MASK
| PSYS PART EMISSIVE MASK
(glow)

//Particles follow the target
//Particles are self-1lit

Chapter 12: Using Particles 203

//| PSYS_PART TARGET LINEAR MASK//Undocumented--Sends parti-
cles in straight line?

I

//PSYS_SRC_TARGET KEY , NULL KEY,//The particles will head to-
wards the specified key
//Select one of the following for a pattern:

//PSYS_SRC_PATTERN_DROP Particles start at
emitter with no velocity

//PSYS_SRC_ PATTERN EXPLODE Particles explode from
the emitter

//PSYS_SRC_PATTERN_ ANGLE Particles are emitted
in a 2-D angle

//PSYS_SRC_PATTERN_ ANGLE_CONE Particles are emitted
in a 3-D cone

//PSYS_SRC PATTERN ANGLE CONE_EMPTY Particles are emitted

everywhere except for a 3-D cone

PSYS SRC_PATTERN, PSYS SRC_PATTERN_ANGLE CONE

,PSYS_SRC_TEXTURE, nn //UUID of the de-
sired particle texture, or inventory name

,PSYS SRC_MAX AGE, 0.0 //Time, in sec-
onds, for particles to be emitted. 0 = forever

,PSYS PART MAX AGE, 4.0 //Lifetime, in
seconds, that a particle lasts

,PSYS SRC_BURST RATE, 0.5 //How long, in
seconds, between each emission

,PSYS SRC_BURST PART COUNT, 6 //Number of par-
ticles per emission

,PSYS SRC_BURST_RADIUS, 10.0 //Radius of emis-
sion

,PSYS SRC BURST SPEED MIN, .4 //Minimum speed of
an emitted particle

,PSYS SRC_BURST SPEED MAX, .5 //Maximum speed of
an emitted particle

,PSYS SRC ACCEL, <0,0,1> //Acceleration of par-
ticles each second

,PSYS PART START COLOR, <1,0,0> //Starting RGB color

,PSYS PART END COLOR, <1,0,0> //Ending RGB color, if
INTERP_COLOR_MASK is on

,PSYS_PART START ALPHA, 1.0 //Starting trans-
parency, 1 is opagque, 0 is transparent.

,PSYS PART END ALPHA, 1.0 //Ending transpar-
ency

,PSYS PART START SCALE, <.25,.25,.25> //Starting par-

ticle size

204

Introduction to Linden Scripting Language for Second Life

,PSYS PART END SCALE, <1.5,1.5,1.5> //Ending particle
size, if INTERP_SCALE MASK is on

,PSYS_SRC_ANGLE_BEGIN, 300 * DEG_TO_RAD //Inner angle
for ANGLE patterns

, PSYS SRC ANGLE_ END, 60 * DEG_TO_RAD/ /Outer angle for
ANGLE patterns

, PSYS SRC_OMEGA, <0.0,0.0,0.0> //Rotation of

ANGLE patterns, similar to 1llTargetOmega ()
1)
}

generalParticleEmitterOff ()

{
}

default

{

llParticleSystem([]) ;

state entry()

{
}

touch start(integer num)

{

generalParticleEmitterOn() ;

// uncomment the following line to allow this effect
// to be turned off
//state off;

}

state off

{
state entry ()

{
}

touch start(integer num)

{
}

generalParticleEmitterOff () ;

state default;

Chapter 12: Using Particles

Nearly all of the work of the basic particle emitter is performed by the call to
llParticleSysteminside of the generalParticleEmitterOn function.

Creating a Particle Emitter

A particle emitter is created by passing a list to the 11ParticleSystem function.
This works in a similar way to the 11SetPrimitiveParams function, which is also
controlled by a list. This list is a series of name-value pairs. The majority of the code pre-
sented in Listing 12.1 creates this list.

The first name-value pair in the listis PSYS PART FLAGS. This defines a number of
flags that define how the particles behave. These flags can be combined using the bit-wise or
operator(|). These flags are summarized in Table 12.1.

Table 12.1: PSYS_PART_FLAGS Flags

Flag Purpose
PSYS_PART_BOUNCE_MASK Bounce on object's z-axis.
PSYS_PART_WIND_MASK Particles are moved by wind.
PSYS_PART_INTERP_COLOR_MASK Colors fade from start to end.
PSYS_PART_INTERP_SCALE_MASK Scale fades from beginning to end.
PSYS_PART_FOLLOW_SRC_MASK Particles follow the emitter.

PSYS_PART_FOLLOW_VELOCITY_MASK Particles are created at the velocity
of the emitter.

PSYS_PART_TARGET_POS_MASK Particles follow the target.
PSYS_PART_EMISSIVE_MASK Particles are self-lit (glow).
PSYS_PART_TARGET_LINEAR_MASK Undocumented flag.

A particle system should specify a pattern using the PSYS SRC PATTERN name-
value pair. Table 12.2 lists the possible patterns that can be specified.

205

206 Introduction to Linden Scripting Language for Second Life

Table 12.2: PSYS_SRC_PATTERN Values

Pattern Purpose

PSYS_SRC_PATTERN_DROP Particles start at emitter with no
velocity.

PSYS_SRC_PATTERN_EXPLODE Particles explode from the emitter.

PSYS_SRC_PATTERN_ANGLE Particles are emitted in a 2-D
angle.

PSYS_SRC_PATTERN_ANGLE_CONE Particles are emitted in a 3-D
cone.

PSYS_SRC_PATTERN_ANGLE_CONE_EMPTY | Particles are emitted everywhere
except for a 3-D cone.

The remaining name-value pairs are simply a name and a simple value such as a number,
texture key, or vector. These name-value pairs are summarized in Table 12.3.

Chapter 12: Using Particles

Table 12.3: Remaining Particle Emitter Name-Value Pairs

Name-Value Pair

Purpose

PSYS_SRC_TARGET_KEY

Specifies the key of an object or avatar
that the particles will move towards. The
PSYS_PART_TARGET_POS_MASK flag
must be specified for the PSYS_SRC_
TARGET_KEY name-value pair to have
any effect.

PSYS_SRC_TEXTURE

Specifies the UUID or inventory name of
the desired particle texture.

PSYS_SRC_MAX_AGE

Specifies the maximum amount of time, in
seconds, that the particle emitter should
emit particles. Specify 0.0 for forever.

PSYS_PART_MAX_AGE

Specifies the amount of time, in seconds,
that each particle should remain for.

PSYS_SRC_BURST_RATE

Specifies the amount of time, in seconds,
between each emission of particles.

PSYS_SRC_BURST_PART_COUNT

Specifies the number of particles to be
produced during each emission.

PSYS_SRC_BURST_RADIUS

Specifies the radius, in meters, of each
particle emission.

PSYS_SRC_BURST_SPEED_MIN

Specifies the minimum burst speed of the
particles.

PSYS_SRC_BURST_SPEED_MAX

Specifies the maximum burst speed of the
particles.

PSYS_SRC_ACCEL

Specifies the acceleration vector for the
particles.

PSYS_PART_START_COLOR

Specifies a starting RGB color for the
particles. Only works if the INTERP_COL-
OR_MASK flag is on.

PSYS_PART_END_COLOR,

Specifies an ending RGB color for the
particles. Only works if the INTERP_COL-
OR_MASK flag is on.

PSYS_PART_START_ALPHA

Specifies the starting transparency for par-
ticles. Specify a value of 1.0 for opaque
and 0.0 for transparent.

PSYS_PART_END_ALPHA

Specifies the ending transparency for par-
ticles. Specify a value of 1.0 for opaque
and 0.0 for transparent.

207

208 Introduction to Linden Scripting Language for Second Life

PSYS_PART_START_SCALE Specifies the starting particle size, as
a vector. Only works if the INTERP_
SCALE_MASK flag was set.

PSYS_PART_END_SCALE Specifies the ending particle size, as
a vector. Only works if the INTERP_
SCALE_MASK flag was set.

PSYS_SRC_ANGLE_BEGIN Specifies the inner angle, in radians, for
angle patterns.

PSYS_SRC_ANGLE_END Specifies the outer angle, in radians, for
angle patterns.

PSYS_SRC_OMEGA Specifies the angle of rotation patterns.

Bymodifying these values, any sort of particle emitter script can be created. The basic parti-
cle emitter script presented in this example creates red particles. The script specifies a vector of
<1,0,0>forthe PSYS PART START COLORand PSYS PART END COLOR.
The value <1, 0, 0> is RGB for red. The partlcles start with a size of < . 25, .25, . 25>
and end with asize of <1.5,1.5, 1.5>. No texture is specified so the particles will be
glowing spheres. To cause the particles to go up,a PSYS SRC ACCELof<0,0,1>is
specified.

Many of the remaining examples in this chapter will simply modify the values of
the basic particle script to create other effects. Once a particle system has been speci-
fied for a prim, that prim will continue to emit particles until the amount of time speci-
fied by PSYS SRC_MAX AGE elapses. If a value of zero was specified, the prim will
continue to create particles indefinably. To stop the prim from producing particles, the
l1lParticleSystem function call should be called with an empty set, as seen here:

llParticleSystem([]) ;

Once an empty set has been specified to the particle system, no more particles will be
produced.

A Fog Machine

There are many different effects that can be achieved with a particle emitter. One of the
most common is a fog machine. A fog machine produces a fog effect all around the device.
Figure 12.2 shows a fog machine in operation.

Chapter 12: Using Particles

Figure 12.2: A Fog Machine

ond Life

Edit View World Tools Het.p I

INRECED
Histony

Communicate

Snapshot

i

Search

t: o =] o Q Windows pata

N\
v

Gestures
Bild Nini=Map Map Inventony:

<L E

The fog machine was built using the particle emitter script shown in Listing 12.1. The

fog machine can be seen in Listing 12.2.
Listing 12.2: A Fog Machine

generalParticleEmitterOn ()
{

llParticleSystem([

PSYS_PART FLAGS , 0

//| PSYS_PART BOUNCE MASK

//| PSYS_PART WIND MASK
wind

| PSYS PART INTERP COLOR_MASK
end

| PSYS PART INTERP SCALE MASK
to end

| PSYS PART FOLLOW_ SRC_MASK

| PSYS PART FOLLOW VELOCITY MASK//Particles

velocity of the emitter
//| PSYS_PART TARGET POS_MASK
| PSYS PART EMISSIVE MASK

//Bounce on object's z-axis
//Particles are moved by

//Colors fade from start to
//Scale fades from beginning

follow the emitter
are created at the

//Particles

//Particles
//Particles

follow the target
are self-1it

209

210

Introduction to Linden Scripting Language for Second Life

(glow)
//| PSYS_PART TARGET LINEAR MASK//Undocumented--Sends parti-
cles in straight line?

I

//PSYS_SRC_TARGET KEY , NULL KEY,//The particles will head to-
wards the specified key
//Select one of the following for a pattern:

//PSYS_SRC_PATTERN_DROP Particles start at
emitter with no velocity

//PSYS_SRC_PATTERN EXPLODE Particles explode from
the emitter

//PSYS_SRC_PATTERN_ ANGLE Particles are emitted
in a 2-D angle

//PSYS_SRC_PATTERN_ ANGLE_CONE Particles are emitted
in a 3-D cone

//PSYS_SRC PATTERN ANGLE CONE_EMPTY Particles are emitted

everywhere except for a 3-D cone

PSYS SRC_PATTERN, PSYS SRC_PATTERN_ANGLE CONE

,PSYS_SRC_TEXTURE, nn //UUID of the de-
sired particle texture, or inventory name

,PSYS SRC_MAX AGE, 0.0 //Time, in sec-
onds, for particles to be emitted. 0 = forever

,PSYS PART MAX AGE, 10.0 //Lifetime, in
seconds, that a particle lasts

,PSYS SRC_BURST RATE, 0.2 //How long, in
seconds, between each emission

,PSYS SRC_BURST PART COUNT, 2 //Number of par-
ticles per emission

,PSYS SRC_BURST_RADIUS, 10.0 //Radius of emis-
sion

,PSYS SRC BURST SPEED MIN, 1 //Minimum speed of
an emitted particle

,PSYS SRC BURST SPEED MAX, 1 //Maximum speed of
an emitted particle

,PSYS SRC ACCEL, <0,0,0.05> //Acceleration of
particles each second

,PSYS PART START COLOR, <1,1,1> //Starting RGB color

,PSYS_PART END COLOR, <1,1,1> //Ending RGB color, if
INTERP_COLOR_MASK is on

,PSYS PART START ALPHA, 0.1 //Starting trans-
parency, 1 is opagque, 0 is transparent.

,PSYS PART END ALPHA, 0.1 //Ending transpar-

ency

Chapter 12: Using Particles 211

,PSYS PART START SCALE, <15,15,15> //Starting particle
size

,PSYS PART END SCALE, <5,5,5> //Ending particle size,
if INTERP_SCALE MASK is on

,PSYS SRC_ANGLE BEGIN, 0 * DEG_TO RAD //Inner angle for
ANGLE patterns

, PSYS SRC ANGLE_ END, 360 * DEG_TO_RAD/ /Outer angle for
ANGLE patterns

, PSYS SRC OMEGA, <0.0,0.0,0.0> //Rotation of

ANGLE patterns, similar to 1l1lTargetOmega ()
1)
}

generalParticleEmitterOff ()

{
}

default

{

llParticleSystem([]) ;

state entry()

{
}

touch start(integer num)

{
// uncomment the following line to allow this effect to be
turned off
//state off;

generalParticleEmitterOn() ;

}

state off

{
state entry()

{
}

touch start(integer num)

{
}

generalParticleEmitterOff () ;

state default;

212 Introduction to Linden Scripting Language for Second Life

The only changes made to the Basic Particle Emitter script were to the
generalParticleEmitterOn function. Several of the parameters to the
ll1ParticleSystem function call were changed.

Table 12.4: Fog Machine Attributes

Particle Attribute Value

PSYS_PART_FLAGS PSYS_PART_INTERP_COLOR_MASK,
PSYS_PART_INTERP_SCALE_MASK,
PSYS_PART_FOLLOW_SRC_MASK,
PSYS_PART_FOLLOW_VELOCITY_
MASK, and PSYS_PART_EMISSIVE_
MASK.

PSYS_SRC_PATTERN PSYS_SRC_PATTERN_ANGLE_CONE

PSYS_SRC_TEXTURE ""

PSYS_SRC_MAX_AGE 0.0

PSYS_PART_MAX_AGE 10.0

PSYS_SRC_BURST_RATE 0.2

PSYS_SRC_BURST_PART_COUNT 2

PSYS_SRC_BURST_RADIUS 10.0

PSYS_SRC_BURST_SPEED_MIN A

PSYS_SRC_BURST_SPEED_MAX A

PSYS_SRC_ACCEL <0,0,0.05>

PSYS_PART_START_COLOR <1,1,1>

PSYS_PART_END_COLOR <1,1,1>

PSYS_PART_START_ALPHA 0.1

PSYS_PART_END_ALPHA 0.1

PSYS_PART_START_SCALE <15,15,15>

PSYS_PART_END_SCALE <5,5,5>

PSYS_SRC_ANGLE_BEGIN 0 *DEG_TO_RAD

PSYS_SRC_ANGLE_END 360 * DEG_TO_RAD

PSYS_SRC_OMEGA <0.0,0.0,0.0>

To create fog, a large particle is selected. The particles startat <15, 15, 15> and end
at <5, 5, 5>. Additionally, they are emitted for the full 360 degrees of a 3D cone. The fog
particles are allowed to remain for up to ten seconds. However, two new fog particles are
emitted five times a second. The fog is emitted with very low speed and acceleration param-
eters. These parameters produce a lingering fog effect.

Chapter 12: Using Particles 213

Snowflake Emitter

So far the particles have been solid color masses. It is also possible to use a texture for
the particle. This allows you to create particles that resemble real-world objects. A snow-
flake is a real-world object that makes a useful particle. This section will show you how to
modify the Basic Particle emitter script to produce snowflakes.

The snowflake texture is a simple transparent snowflake, as can be seen in Figure 12.3.

Figure 12.3: Snowflake Texture

These snowflakes will be much smaller than Figure 12.3 when emitted. Figure 12.4
shows a snowflake emitter working.

214

Introduction to Linden Scripting Language for Second Life

Figure 12.4: A Snowflake Emitter

W Second Life

File Edit View WurE Tools Help

INIRECE]

@ Encogialrs, 18

45 (PG) - Enco

6:0LAMPST & LS

=

-

"

. s B . @ (& aEle I]

sooy tfiee

Communicate! Chat)

) - T
i :g ol ﬁ‘ f{l Second Life

Stop Flying) &'Snapshot

Search

Blild Mini=Map Map Inventony

< BB, FW 201 AM

The script used to create the snowflake emitter is an adaptation of the Basic Particle emit-
ter script, shown in Listing 12.1. The snowflake emitter can be seen in Listing 12.3.

Listing 12.3: snowflake Emitter

generalParticleEmitterOn ()

{
llParticleSystem([
PSYS PART FLAGS , 0
//| PSYS PART BOUNCE MASK
| PSYS PART WIND MASK
| PSYS PART INTERP COLOR_MASK
end

| PSYS PART INTERP SCALE MASK
to end
| PSYS PART FOLLOW SRC MASK

//Bounce on object's z-axis
//Particles are moved by wind
//Colors fade from start to

//Scale fades from beginning

//Particles follow the emitter

| PSYS PART FOLLOW VELOCITY MASK//Particles are created at the

velocity of the emitter
//| PSYS_ PART TARGET POS MASK
| PSYS PART EMISSIVE MASK
(glow)

//Particles follow the target
//Particles are self-1lit

Chapter 12: Using Particles

//| PSYS_PART TARGET LINEAR MASK//Undocumented--Sends parti-
cles in straight line?

I

//PSYS_SRC_TARGET KEY , NULL KEY,//The particles will head to-
wards the specified key
//Select one of the following for a pattern:

//PSYS_SRC_PATTERN_DROP Particles start at
emitter with no velocity

//PSYS_SRC_ PATTERN EXPLODE Particles explode from
the emitter

//PSYS_SRC_PATTERN_ ANGLE Particles are emitted
in a 2-D angle

//PSYS_SRC_PATTERN_ ANGLE_CONE Particles are emitted
in a 3-D cone

//PSYS_SRC PATTERN ANGLE CONE_EMPTY Particles are emitted

everywhere except for a 3-D cone

PSYS SRC_PATTERN, PSYS SRC_PATTERN_ANGLE CONE

,PSYS_SRC_TEXTURE, "snowflake" //UUID of
the desired particle texture, or inventory name

,PSYS SRC_MAX AGE, 0.0 //Time, in sec-
onds, for particles to be emitted. 0 = forever

,PSYS PART MAX AGE, 60.0 //Lifetime, in
seconds, that a particle lasts

,PSYS SRC_BURST RATE, 0.2 //How long, in
seconds, between each emission

,PSYS SRC_BURST PART COUNT, 20 //Number of par-
ticles per emission

,PSYS SRC_BURST_RADIUS, 10.0 //Radius of emis-
sion

,PSYS_SRC_BURST_SPEED_ MIN, 1.0 //Minimum speed
of an emitted particle

,PSYS_SRC_BURST_SPEED MAX, 2.0 //Maximum speed
of an emitted particle

,PSYS SRC ACCEL, <0,0,-0.5> //Acceleration of
particles each second

,PSYS PART START COLOR, <1,1,1> //Starting RGB color

,PSYS PART END COLOR, <1,1,1> //Ending RGB color, if
INTERP_COLOR_MASK is on

,PSYS_PART START ALPHA, 1.0 //Starting trans-
parency, 1 is opagque, 0 is transparent.

,PSYS PART END ALPHA, 1.0 //Ending transpar-
ency

,PSYS_PART START SCALE, <0.25,0.25,0.25> //Starting par-

215

216

Introduction to Linden Scripting Language for Second Life

ticle size

,PSYS_PART END SCALE, <0.25,0.25,0.25> //Ending par-
ticle size, if INTERP_SCALE MASK is on

,PSYS SRC_ANGLE_BEGIN, 0 * DEG _TO RAD //Inner angle for
ANGLE patterns

,PSYS SRC_ANGLE_END, 360 * DEG_TO RAD//Outer angle for
ANGLE patterns

, PSYS SRC OMEGA, <0.0,0.0,0.0> //Rotation of

ANGLE patterns, similar to 1llTargetOmega ()
1)
}

generalParticleEmitterOff ()

{
}

default

{

llParticleSystem([]) ;

state entry()

{
}

touch start(integer num)

{
// uncomment the following line to allow this effect to be
turned off
//state off;

generalParticleEmitterOn() ;

}

state off

{
state entry ()

{
}

touch start(integer num)

{
}

generalParticleEmitterOff () ;

state default;

Chapter 12: Using Particles 217

The only changes made to the Basic Particle Emitter script were to the
generalParticleEmitterOn function. Several of the parameters to the
llParticleSystem function call were changed. These changes are summarized in

Table 12.5.

Table 12.5: Snowflake Emitter Attributes

Particle Attribute

Value

PSYS_PART_FLAGS

PSYS_PART_WIND_MASK, PSYS_
PART_INTERP_COLOR_MASK,
PSYS_PART_INTERP_SCALE_MASK,
PSYS_PART_FOLLOW_SRC_MASK,
PSYS_PART_FOLLOW_VELOCITY_
MASK, PSYS_PART_EMISSIVE_MASK

PSYS_SRC_PATTERN

PSYS_SRC_PATTERN_ANGLE_CONE

PSYS_SRC_TEXTURE

"snowflake"

PSYS_SRC_MAX_AGE 0.0
PSYS_PART_MAX_AGE 60.0
PSYS_SRC_BURST_RATE 0.2
PSYS_SRC_BURST_PART_COUNT 20
PSYS_SRC_BURST_RADIUS 10.0
PSYS_SRC_BURST_SPEED_MIN 1.0
PSYS_SRC_BURST_SPEED_MAX 2.0
PSYS_SRC_ACCEL <0,0,-0.5>
PSYS_PART_START_COLOR <1,1,1>
PSYS_PART_END_COLOR <1,1,1>
PSYS_PART_START_ALPHA 1.0
PSYS_PART_END_ALPHA 1.0

PSYS_PART_START_SCALE

<0.25,0.25,0.25>

PSYS_PART_END_SCALE

<0.25,0.25,0.25>

PSYS_SRC_ANGLE_BEGIN

0 * DEG_TO_RAD

PSYS_SRC_ANGLE_END

360 * DEG_TO_RAD

PSYS_SRC_OMEGA

<0.0,0.0,0.0>

218

Introduction to Linden Scripting Language for Second Life

To create snowflake, a small particle is selected. @ The particles start at
<0.25 0.25, 0.25> and remains at that size. Additionally, they are emitted for
the full 360 degrees of a 3D cone. The snowflakes particles are allowed to remain for up to
a minute. However, twenty new snowflake particles are emitted five times a second. The
snowflakes are emitted with very low speed and acceleration parameters. These parameters
produce a gently falling snow effect.

Summary

Particles are 2D sprites that are displayed in the Second Life world. They can be used to
create effects such as smoke, snow, fog, flashes and other effects. Particles are configured
through a large set of parameters.

This is the final chapter of this book. There is likely to be future editions as Second
Life evolves. We are always looking for suggestions and additional examples for future
books. If you have any suggestions or comments on this book feel free to contact us at
support@heatonresearch.com.

This book introduced you to the Linden Scripting Language. You now have the basic
tools to begin building scripts of your own. If you are interested in learning more, you should
consider purchasing our book “Scripting Recipes for Second Life” (ISBN 160439000X). This
book contains scripting examples for many common objects in Second Life. The recipes span
a wide array of uses. Useful recipes for buildings provide elevators, teleport pads and lock-
ing doors. Vehicles are covered with example cars, boats and helicopters. The video game
side of Second Life is demonstrated with an assortment of gun and bullet recipes. Recipes for
wearable items such as glittering jewelry, jet packs, parachutes and anti-push orbs are also
presented. Recipes for slide shows, cannons, weather stations and other miscellaneous items
are also covered. Commerce is a huge part of Second Life. Two chapters are dedicated to
commerce objects, such as tip jars, rental scripts and vendor kiosks.

Heaton Research occasionally schedules classes in the Second Life world. These are
almost always free of charge. To keep up to date on our Second Life events, consider joining
the Second Life Group:

Heaton Research Courses
Simply search for it under groups! We hope you find these examples useful. Happy

scripting!

Stop by and visit Heaton Research in Second Life. We own the island of Encogia, which
can be found at the following URL:

http://slurl.com/secondlife/Encogia/197/191/23

Happy scripting!

Chapter 12: Using Particles 219

220 Introduction to Linden Scripting Language for Second Life

Appendix A: Downloading Examples 221

APPENDIX A: DOWNLOADING EXAMPLES

This book contains many source code examples. You do not need to retype any of these
examples; they all can be downloaded from the Internet.

Simply go to the site:

http://www.heatonresearch.com/download/

This site will give you more information on how to download the example programs.

All examples in this book can also be obtained as actual Second Life objects. This is done
inside of Second Life itself. The examples can be found at the Heaton Research Tree House.
Stop by and visit Heaton Research in Second Life. We own the island of Encogia, which can
be found at the following URL:

http://slurl.com/secondlife/Encogia/197/191/23

2292 Introduction to Linden Scripting Language for Second Life

Index

INDEX

A

Acceleration 167
of particles 203,210, 215
Addition operator 131
Agent 55,117,172, 175, 183-4
Air 145-6, 186
ALPHA 203,210, 212, 215,217
Angle 41, 166, 177, 203-4, 206, 208, 210-1, 215-6
patterns 204, 208, 211, 216
Angular 166, 171-4, 177, 179-82
deflection 178-9, 181
velocity 180
Applying Force 163, 166
Arrays 128, 131, 138, 218
dimensional 138
Arrows 37-8, 76, 143
Attraction 172, 180, 182
Attributes 36-7, 186, 189, 191, 196-9
Automobile 51-2
Avatar
radars 116
touching 107, 126
Avatars 45, 51, 56-7, 60, 63-4, 99-108, 111, 113-21,
125-6, 155, 159-61, 163, 165-7, 174-5, 183-4
bump 167
communicate 99, 100
detected 118
female 159
multiple 115
touching 126, 128

B

Backwards 69, 174, 176, 181
Balloon 147-50, 152-7, 159, 161, 178
seating script 159-60
touring 147-9, 152
hot-air 147
BANKING 179
Basic Particle 201-2, 205, 212-4, 217
Boing sound 164-5
Boolean 94, 191
logic 65
Bounce 165, 178-80, 202, 205, 209, 214

Box 42,46, 52,110, 143, 192-5
Break 67-8

Building 35, 47, 51, 218

Bumper sticker 170

BUOYANCY Value 179

BURST 203,207,210, 212, 215, 217
Buttons 35,52, 104, 109-11

green 109

red 109-10

C

Camera 178
Car 168, 176-8, 182
Card 118
Case statements 63, 66-8
Change 37,40, 42, 120, 144, 146, 156, 170, 172,
174, 181, 183-4, 189, 192, 198
Channel 57, 64,99-104, 111, 119-20
chat 111
normal conversation 101
private 57
special communications 99
CHANNEL variable 101
Characters 86-8, 96
length of 87-8
CHARS 85, 87-8
Click 35-6
Code 51, 54,56, 58, 66-7,71,77-8, 83, 95, 116,
124, 131-4, 146, 167-8, 170
blocks of 54, 56, 63, 66-8, 71
default block of 54
following 55, 58-9, 64-6, 84, 197
Collides 113-5
Collision 51, 114-6, 163-5
events 113-5
script 115
set 114
stops 114-5
track 114
Collision Start 115
Collisions work 115
Colon 95-6
Colors 42-3, 47,55, 103, 108-11, 132, 134, 189,
191, 197-8

223

224

Introduction to Linden Scripting Language for Second Life

Comma-separated values 134
Commands 78, 100, 167
Commas 134-5, 149, 155
Communicate 52, 56-7, 99, 100, 102, 108, 111, 134
Communication 57, 97,99, 101-3, 105, 107-9, 111,
134, 139
Communication Function Distance 102
Communication functions 102
Compare 67, 84, 86-90
numerical integer values 67
CompareLen 86-7, 89, 90
method 89, 90
CompareNoCase 86, 90
function works 89
CompareNoCaseLen 86, 88-9
Comparison 64-5, 87, 89, 90
direct string 52
Components 144-5, 198
Concept 52,75
CONE 203, 206, 210, 212, 215, 217-8
Configuration information 92-7, 155
Configure Balloon 149, 153
Conjunction 44, 63, 65
Constants 101, 146, 163, 167, 189-92, 194, 196-7
Content 40, 44,91, 118
properties 43-4
tab 44,52
Control
event handler 176-7
keys 176
Conversations 100-1, 111
Coordinate planes 176
Coordinates 141, 143-6, 157, 159, 161, 185
start 143
Core string operations 83
Count 57-60, 71, 137,201, 203, 210, 212, 215, 217
backwards 69
maximum object 201
variable 58
Countdown 152, 156
state 156
Counters 58, 167
Creating Primitive Objects 35
Creating Vehicles 163
Creator 40
CSV 134-5
functions 134, 136
special form of 134
string 134-5
Cube 52,109,111, 197
Curly brace 54
Current position 144-6, 157

CurrentWaypoint 149-50, 153-4, 157
Cursor keys 174, 176

Cylinder integer holeshape 193
Cylinders 193-5

D

Data, removing 131-2
Dataserver 93, 95, 150, 154
Decay 171, 179-81
exponential 180
Decisions 61, 63, 70-1
Deflection 171, 178-9, 181
Degrees 41, 117, 146-7, 194, 196, 212, 218
Delimiter 135-6
Dialog 99, 103-4, 120-2
lists 120
payment 120-1
Direction 37, 146, 173-4, 176-7, 180, 185
Display 57-9, 71, 94, 108, 133-4, 145, 153
function 59
Driver 170, 174, 182-3

E

Edit 39-41, 44, 52-3, 189
window 194
Editing 36-40
Effectiveness 179-80
Efficiency 171-2, 181-2
Efficiency Value 179-80
Elements
first 138, 197
single 134
Emission 203, 207, 210, 215
Emitter 202-3, 205-6, 209-10, 214-5
snowflake 213-4
EMPTY Particles 206
Encogia Island 142-4, 146, 148, 161, 218
END 203-4,207-8, 210-2, 215-7
End-of-file 95, 154
Ending
particle size 204, 208, 211, 216
transparency 203, 207, 210, 215

Entry 57-60, 76-9, 90, 92-5, 105-6, 116-7, 123,
146-7, 149-50, 152, 154-7, 159-60, 164-5,

183-5, 204
EOF 93,95, 150, 154-5
Event
dataserver 95, 155

entry 58, 60, 64, 78-9, 101, 114, 177, 182
functions 60, 113
handler 101, 104, 165, 174
changed 174, 184
listen 64,101, 113, 125
message 111
money 113, 119-20
types 52,60, 113
Events 52, 56, 58, 60, 78-9, 95, 107-8, 111, 113-7,
119, 121, 123-5, 127-9, 154, 163
changed 160
running 156
single 156
Execute 44, 63, 65-6, 68, 70-1, 80, 133
EXPLODE Particles 206
Exponential timescale 179-80
Expression 55, 65, 68, 70-1

F

File 95,97
configuration 92
Fly 132, 144-5
Flying 148
Fog 212,218
machine 201, 208-9
Format 132, 134, 189
Friction 42, 169-72, 178, 180-2, 191, 196
Full-Bright 191
Func-function 139
Function call 102, 108, 138-9, 161, 167, 178, 184,
189
single 132
Functionality 61, 77

Functions 52, 56-61, 80, 83-4, 87-8, 90, 101-2, 104,

107, 115-7, 120-1, 125, 128, 134-5, 205
chapters 198
compare 89
compareLen 87, 89
compareNoCase 89
compareNoCaseLen 88
complex 189
generalParticleEmitterOn 212, 217
global 153
group detection 116
nextWaypoint 154
return 106
simple 58, 120, 124
single 57
specialized 198
updateText 120

Index

G

GeneralParticleEmitterOff 204, 211, 216
GeneralParticleEmitterOn 202, 204-5, 209, 211,
214,216
Getting List Statistics 137
Giver 119-20
Glass 42, 169-70
Glow 199, 202, 205, 210, 214
Gravity 42,51, 115, 167, 191
Greeting 101
Ground 52, 114, 143, 145, 167, 169-70, 178
Group 125-8, 138, 218
strided 138
Guessing game 122

H

Handler 174, 176
Heterogeneous list 55
Hole 194-5

Holesize 194

Hollow 41, 194
Hover 178-9
Hubcaps 185

I

Id 93,95, 120, 124, 150, 154, 156
Impulse 163, 166-7
vector 166
IMs 99
Index 85, 87-8,92,94, 133, 139, 153
Instant messages 99, 100, 102, 104-5, 111
Instructing avatars 106
Integer 55-60, 69-71, 76-9, 86, 89, 92-5, 104-6,
109-10, 115-7, 119, 122-5, 127, 133-5, 164-
8,191-2
Intensity 42, 189, 191
Interact 48,61, 139, 141
Interval 113-4, 118, 123, 156
Inventory 91, 106, 118, 146
Island 148
Items 52,92-6, 118, 128, 131-2, 134, 138-9, 165,
199
inventory 55
miscellaneous 218
named 94
pairs of 153, 155

225

226

Introduction to Linden Scripting Language for Second Life

removing 131
single 139
wearable 218

K

Key 55, 63-4,101-6, 109-10, 116-9, 123, 126, 133,
153, 155, 159-61, 164-5, 203, 210, 215

L

Ladder 66-7
Land 35, 114-5, 142, 186, 201
collision events 114
parallel 114
collisions 114-5
Language 52,75, 128
Linden Scripting Language 48, 50-2, 60-4, 66-8,
70-2, 74-8, 80, 82-4, 96, 98-104, 128, 134-6,
138-40, 160-2, 188-90
Linden String Functions 84
Line 71,93,95-6, 124, 132-4, 149-50, 153-5, 168
Link 46, 110-1, 152, 155, 170
Linked
messages 99, 108, 111
prims 44,108, 111, 196-7
Linking Primitive Objects 35
List 55, 66, 83-4, 87, 104, 117-8, 128, 131-9, 141,
155, 189-90, 194-8, 205
temp 150, 155
temporary 132
test 139
tracks 118
waypoint 156
waypoints 149, 153
List Statistics 136
Listen 64,97, 100-2, 104, 108, 111, 120, 123
11Applylmpulse 167-8
I1ApplyRotationallmpulse 168
IlAvatarOnSitTarget 159-60, 172, 175, 183-4
IICSV2List 135, 150, 155
IIDeleteSubList 118, 132
lIDeleteSubString 84
IIDetectedKey 104-6, 116-8, 120, 124-6, 164-5
IIDetectedName 105-7, 115-6, 125, 127-8
IIDialog 104, 120
[IDumpList2String 84, 132-3, 135
using 135
11Euler2Rot 145, 147
IlIFabs 150-1, 157-8

IlIFrand 122, 125, 198
lIGetListLength 118, 134, 149, 153
llIGetMass 167-8
llIGetNotecardLine 93, 95-6, 149-50, 154-5
1IGetOwner 102, 119-20, 123-5, 133, 172, 175
11IGetPos 135, 144-6, 150, 157, 198
object call 144
llIGetRegionName 105-6
lIGetRot 145, 147
object call 144
11GetSubString 85, 87, 93, 96
extracts 84
lIGetVel 168,173,176, 184-5
lIGivelnventory 118
lIGiveMoney 124
llInsertString 84
llInstantMessage 102, 105-7
lIKey2Name 102, 119-20
1IL ist2String 133
IIList2CSV 135
IIList2Integer Retrieve 133
1IList2String 133-4, 149-50, 153, 155, 197
1IList2String Retrieve 133
IIList2Vector 133, 149, 153
IlListen 63-4, 101, 103, 119, 123
function call 64
IIListFindList 117-8, 139
lIListRandomize 138-9
IIListSort 138-9
IIListStatistics 137
1I0wnerSay 102, 104, 133-5, 146
[IParseString2List 84
1IParseString2List Parse 136
1IParseStringKeepNulls 84
1IParseStringKeepNulls Parse 136
IIParticleSystem 202, 204-5, 208-9, 211, 214, 216
function call 208,212,217
1IPreloadSound 164-5, 171, 178
1IPushObject 164-6, 172, 175
lIRegionSay 102
lIRequestPermissions 123-4, 172, 175
1IResetScript 105-6, 119, 123, 173, 176
lIRot2Euler 145, 147
IISay 45, 56-60, 64-71, 76-9, 86, 90, 92-5, 101-2,
114-6, 119-20, 123, 125, 137, 145, 149-56
function 102
call 56
lISensorRepeat 117
11SetColor 104, 110-1
11SetForce 167
11SetLinkPrimitiveParams 189, 197
function set 199

lISetPayPrice 121
1ISetPos 146, 151, 159, 198
function 157
11SetPrimitiveParams 189-91, 196-8
lISetRot 146-7
1ISetScale 159-61
lISetSitText 159-60, 171, 177
lISetStatus 167, 170, 172, 175
1ISetText 105-6, 108, 117, 119-20, 159-61
function call 107
1ISetTextureAnim 184-6
1ISetTimerEvent 113-4, 123, 146-7, 150, 152, 156-
7, 184-5, 198
call 114
11SetVehicleFloatParam 171-2, 178, 181-2
11SetVehicleRotationParam 178
1ISetVehicleType 171,178, 181
11SetVehicleVectorParam 171, 173-4, 176-8, 181-2
1ISitTarget 159-60, 171, 177, 183-4
function call 182
lISleep 172,175
1IStringLength 84, 86, 89
lIStringTrim 84
1ISubStringIndex 85, 87, 93, 95
finds 84
1ITakeControls 173-4
lITargetOmega 147, 173, 175-6, 204, 211, 216
lIToLower 84-6, 89, 90, 101, 104
lITriggerSound 116, 164-5, 172, 175
1IUnSit 172, 175, 183-4
IIVecMag 173, 176, 184-5
IIWhisper 102, 105-6
Local variables 56-7, 157
Location 95-6, 132, 141, 146, 154, 166
Loop 63, 68-71, 87-8, 107, 115, 126, 133, 184-6
executes 71
types 68,71
works 71
Looping 88, 118, 137
Loops 63, 68, 70-1

M

Magic wand 36
Main Car Script 171
Mainland 142
Males 159
Map 141-2
bump 195
MASK 202-4,209-12,214-7
Mass 167, 169, 180, 196

Index

227

Match 64, 68, 150-1, 157-9, 195

MATERIAL 191, 196

Material types 42, 169-70, 196

Materials 43, 147, 169-70, 196

MAX 137,203, 207-8, 210, 212, 215, 217

Maximum strength 179

MaxList 118

MEDIAN 137

Message 64, 100-2, 104-6, 108-11, 113, 120, 123,

146, 149, 151-3, 155-6, 159, 161, 171-2, 175

string 171

Meters 117, 148, 167, 207

Modifying Primitive Objects 35

Money 113, 119, 121-2, 124

Motion 47,51,167, 176, 184

Motor 170, 173-4, 176-8

MOTOR 171, 173-4, 176-7, 179-81
angular 176-7, 179, 181
linear 176, 180-1

Mouse 36

Movement 42, 46, 108, 139, 157, 161, 167

N

New script button 44
Non-Physical Movement 139, 141, 143, 145, 147,
149, 151, 153, 155, 157, 159, 161
Notecards 83, 91-7, 116-8, 148, 150, 152-4
configuration 152-4
folder 91
loading 149, 153
new 91

(0]

Object 40-4, 46-8, 52, 55-8, 90-1, 99-102, 104-10,
113-20, 125-8, 137, 144-7, 163, 165-8, 186,
191-2

bigger 35
building 35
collision events 114
commerce 218
common 218
complex 46
Second Life 47
compound 46
created 141
current 166-7
inventory 118
linked 46, 108-9, 161

228

Introduction to Linden Scripting Language for Second Life

mathematically perfect 41
move 141, 161, 186
moving 117
multiple 46, 114
non-moving 117
non-physical 147, 166
phantom 116
primitive 35
properties 41, 118, 186
tab 41
window 126
real-world 213
resemble real-world 213
resize 186
scripted 60
in Second Life 35, 44, 47, 100, 115, 186
security 116
single 52, 108
tab 41
text 160
type 91
special 128
window 169
Object Prim Properties 41
Objects
follow 141
move 141
owner 102
shine 199
Offset 43,178, 180, 194
OMEGA 204, 211-2, 216-7
One-dimensional 138
Online Detector 105-6
Opaque 203,207,210, 215
Operator 55, 60, 65, 117, 132, 205
Owner 35, 40-1, 91, 100, 102, 104-6, 120-1, 125-6,
133,171-2, 175
message 171

P

Pager 105-6
Paging 105-6
Pairs 139, 153-4
name-value 205-6
Parameters 57-60, 64, 87-8, 101, 107-8, 110, 117,
121, 139, 147, 167, 189, 194, 212, 217-8
Parse 80, 83,92, 94, 135, 155
Particle
emission 201, 203, 207-8, 210, 215
emitter script 208-9

basic 201, 208
emitters 201, 205, 207-8
script, basic 208
system 205, 208
Particles 199, 201-3, 205, 207-10, 213-5, 218
fog 212
follow 202,209, 214
large 212
producing 208
red 201,208
snowflake 218
start 203, 206, 208, 210, 212, 215,218
Parts, common 128
Passengers 147, 156, 159, 182-3
Pattern 203, 205, 210, 215
PATTERN 203, 206, 210, 212, 215,217
Perm 123-4,173-4
Permission event 124
Permissions 41, 121, 123-4, 172-5
event handler 174
Physical
movement 141, 144, 161, 163, 165, 167, 169,
171,173,175, 177, 179, 181, 183, 185
objects 42,46, 115, 166, 170, 175
Physics 141, 161, 163, 167, 169, 172, 175, 191
PI 117,147,173,175,192
Pos 145-6, 150-1, 157-9, 202, 205, 207, 209, 214
Primitive Object Properties 35
Primitive types 192, 194
Primitives 40, 51-2, 108, 170, 189, 192, 197-9
Primitive’s Attributes 189
Primitives, geometric 36
Private islands 142
Prize 123,125
Products 138-9
list of 138-9
Program 35, 48, 52,72, 75, 80, 87, 108, 125
computer 48,75
Programming 75, 77-8
languages 52, 68, 128, 131
Properties 39-41

Q

Quaternions 145, 161

R

Radians 117, 146-7, 161, 208
RADIUS 203, 210, 212, 215, 217

Random values 198
Randomize 138-9
Randomizing Lists 138
Range 136-7, 189, 194,201
RATE 203,210,212, 215,217
Ratio 171, 173-4, 177
Read 91-2,94-7, 153-4
notecards 92
Recipes 102,218
Regions 102, 141-5, 147, 157, 161
large grid of 141-2
Reset 57-8, 106, 120, 154, 157
Resize boxes 37-8
RGB color 203, 207, 210, 215
Root prim 46-7, 108, 110, 170-1, 183, 197
Rotation
current 144-5, 147, 168
objects 145
rot 145,147,191
values 197
Rotational 168
Rubber 42, 169, 191

S

Sandbox 35
Scan 117
Scanners 117
Scope 56-7, 145
Script 43-5, 51-8, 60-1, 63-4, 70-1, 75-80, 90-2, 94,
101-11, 113-5, 117-9, 124-6, 145-7, 185-6,
197-9
active 189
building 218
complex 45
editor 53-4
executes 80
following 56-7, 59, 70, 77-8, 101, 125-7
functionality 165
generic 54
hubcap 185
level variables 56-8, 94, 105
new 44-5,52-4,76
notecard 94
programming 61
rental 218
segment 68, 80
following 65, 67-8, 79
sets 71
variables 79, 96
vehicle 170

Index 229
wheel 185
Seconds 152, 156, 181, 197-8, 203, 207, 210, 212,
215

Self-lit 202, 205, 209, 214
Send 99, 100, 102, 104-6, 109-10
instant messages 97, 100, 104, 111
seat scripts 155
Sends particles 203, 210, 215
Sensor Events 113, 116, 118
Sensors 116-7
Set 35, 40-2, 44,77, 95-6, 126, 147, 156-8, 167,
177-8, 180-1, 189, 191, 196-8, 208
empty 208
link 197, 199
Setting 127, 160, 169, 176-7, 181, 198
Shininess 43, 191, 196
Shorthand 55
Signature 108, 114, 117, 119, 121, 124, 136, 138-9,
166, 168, 189, 197
Simple Notecard 92
Simulate 51
Simulation 51
Size, particle 203, 208, 211
Smoke 199,201, 218
Snowflakes 213,215,218
Snowman 46-7
Sorting 138
Sorting Lists 138
Sounds 51-2, 55, 165, 175, 178
Speak 100, 111
Sphere 192-4
integer holeshape 193
Spins 147, 166, 168
Sprites 199, 201, 218
Squares 136-7, 195
Src 133
Start 45, 54, 56-60, 69-71, 76-9, 104-6, 109-10,
114-6, 133-5, 145, 164-5, 171-2, 202-5, 207-
12, 214-7
event function 58, 104, 126
Starting
point 54,201
transparency 203, 207, 210, 215
STAT 136-7
State
engines 75, 80
level variables 79
loading 92-5
machines 52, 54,72, 75-81
in Second Life 75
multiple 60
mystate 79, 80

230

Introduction to Linden Scripting Language for Second Life

statement 78
switches 78
Statements 60, 63-8, 71
break 67
control 63,71
default 68
return 60
special 66
switch 67-8
Statistic Type Purpose 136
Statistic Types 136
Statistics 136-7
Stop 167-8, 170, 175, 181, 208, 218
Strided lists 131, 133, 138-9, 141
String 55-60, 69-71, 80, 83-91, 94, 96-7, 101-2,
105, 110, 119-20, 123, 131-7, 139, 145-6,
149
Sum 136, 180
Switch 63, 66-8,71, 77-8
Symbols 134

T

Tabs 40-1
Taper 41,194
Target vector 153, 159
Temp 150, 155, 191
Terminal state 76
Text 83,91, 96, 106-8, 120, 160, 177
Texture 40, 43-4, 55, 185, 189, 192, 195, 203, 208,
210, 212-3, 215, 217
desired particle 203, 207, 210, 215
snowflake 213
Thanks for the 119-20
Timer 113-4, 124, 146-7, 150, 152, 156-7, 184-5,
198
event 113,147, 156-7, 198
Timer Events 52, 113
Timescale 171-2, 179-82
Timescale Exponential timescale 179
Timescales 180
Tip jars 119-20, 218
Tips 120
Tires 169, 185
Tom 139
Tools menu 46
Top 80, 109-10, 144
TORUS 193
Torus integer holeshape 193
Touch 45, 56-60, 69-71, 76-9, 102, 104-7, 109-10,
113, 119, 124-7, 133-5, 145, 204, 211, 216

events 103, 109

named 54
Touching 126

avatar claims 106
Tours 147, 149, 161
Trampoline 163-5
Trampoline Script 164
Tube integer hole-shape 194
Tubes 194
Turn 51, 169, 174-6, 178, 181
Twist 41, 194
Types

common loop 68

numeric 56

third loop 71

vector data 108, 161

U

UpdateText 119-20

Url 84,218

User 52,77,99, 101, 103-6, 119-21, 124, 127, 155,
159, 176-7, 183

UUID 55,203, 207, 210, 215

\%

Values 55-60, 64, 69-71, 77, 87-8, 92-4, 96, 108,
138, 146-7, 149, 153, 180-1, 189, 206-8
Vector 55, 108, 131, 133-4, 144-7, 149-50, 155,
161, 164-5, 167-8, 172, 175, 191-4, 197-8,
208
acceleration 207
vel 173,176, 184-5
vrot 145, 147
zero 133
VEHICLE 171-4, 176-82
axes 180
creation 170
parameters 178, 181
shares 177
Vehicle Materials 169
Vehicle Motors 163, 167
Vehicle Type Purpose 178
Vehicle Types 177-8, 181
Vehicle z-axis 180
Vehicles 42,46, 51, 125, 163, 165, 167, 169-71,
173-87, 201, 218
advanced 161
in Second Life 176

Index 231

Vel 173,176, 184-5

Velocity 167-8, 179, 202-3, 205-6, 209-10, 214-5
VELOCITY 202, 205, 209, 212,214, 217
Velocity, linear 180-1

Vrot 145, 147

\u4

Waiting state 152, 155-6, 159
Water 116, 178
Waypoint message 159
Waypoints 149-50, 152-5, 157, 159
balloon loading 149, 154
list 153,155
next 153,157,159
Weather stations 218
Welcome Notecard 117
West 142, 144
Wheels 172, 184-5
WheelScript.Isl 184-5
Wind 42, 191, 202, 205, 209, 214
WIND 202, 205, 209, 214, 217
Window 35-6, 46
Wood 42, 169, 196
World 48, 51, 61, 64,97, 106, 139, 141
z-axis 180

X

X-coordinate 146, 157
X-Rotation 145

Y

Y-coordinate 158, 181
Y-Rotation 145

V/

Z-axis 147, 180, 202, 205, 209, 214

Z-coordinates 108, 143-4, 146, 149, 158, 161, 166-
8,177, 181

Z-Rotation 145

232 Introduction to Linden Scripting Language for Second Life

	Introduction
	Chapter 1: Introduction to Second Life Building
	Chapter 2: Introduction to LSL
	Chapter 3: Script Control
	Chapter 4: State Machines
	Chapter 5: String Handling
	Chapter 6: Communication
	Chapter 7: Events
	Chapter 8: Lists
	Chapter 9: Non-Physical Movement
	Chapter 10: Physical Movement and Vehicles
	Chapter 11: Changing Object Attributes
	Chapter 12: Using Particles
	Appendix A: Downloading Examples

	Introduction
	Chapter 1: Introduction to Second Life Building
	Creating Prims
	Modifying Prims Visually
	Modifying Prims with the Properties Window
	Linking Prims
	Summary

	Chapter 2: Introduction to LSL
	Second Life Programming
	Creating a Script
	Variables
	Functions
	Events
	Summary

	Chapter 3: Script Control
	Using If and Else Statements
	Using Switch and Case
	Using Loops
	Summary

	Chapter 4: State Machines
	What is a State Machine?
	Understanding Second Life State Machines
	Life With and Without State Machines
	Summary

	Chapter 5: String Handling
	String Functions
	String Comparison
	Using Notecards
	Summary

	Chapter 6: Communication
	Speaking and Listening
	Understanding Dialogs
	Instant Messages
	Setting Prim Text
	Linked Messages
	Summary

	Chapter 7: Events
	Timer Events
	Collision Events
	Sensor Events
	Money Events
	Handling Permissions
	Implementing Basic Security
	Summary

	Chapter 8: Lists
	Adding and Removing Items to Lists
	Retrieving Data from Lists
	Lists and CSV
	List Statistics
	Sorting, Searching and Striding Lists
	Summary

	Chapter 9: Non-Physical Movement
	Second Life Coordinates
	Displaying an Object's Location and Rotation
	Changing and Object's Location and Rotation
	A Touring Balloon
	Summary

	Chapter 10: Physical Movement and Vehicles
	Applying Force to an Avatar
	Applying Force to the Current Object
	Second Life Vehicles
	Summary

	Chapter 11: Changing Object Attributes
	Using llSetPrimitiveParams
	Using llGetPrimitiveParams
	Using llSetLinkPrimitiveParams
	Setting Attribute Properties
	Summary

	Chapter 12: Using Particles
	Basic Particle Emitter
	A Fog Machine
	Snowflake Emitter
	Summary

	Appendix A: Downloading Examples
	Figure 1.1: The Build Window
	Figure 1.2: Editing a Prim's Position
	Figure 1.3: Editing a Prim's Size
	Figure 1.4: Editing a Prim's Rotation
	Figure 1.5: The General Properties of a Prim
	Figure 1.6: The Object Properties of a Prim
	Figure 1.7: The Features Properties of a Prim
	Figure 1.8: The Textures Properties of a Prim
	Figure 1.9: The Content Properties of a Prim
	Figure 1.10: A New Script
	Figure 1.11: Linking a Snowman
	Figure 1.12: The Root Prim of the Snowman
	Figure 2.1: A New Script
	Figure 2.2: The Script Editor
	Figure 4.1: A State Machine
	Figure 5.1: Creating a Notecard
	Figure 6.1: Conversation on Channel 0
	Figure 6.2: Second Life Dialogs
	Figure 6.3: Prim Text
	Figure 6.4: A Simple Linked Object
	Figure 7.1: A Payment Dialog
	Figure 7.2: Money Dialog
	Figure 7.3: Setting the Group of an Object
	Figure 9.1: Gyeonu and Surrounding Regions
	Figure 9.2: Encogia Island
	Figure 9.3: The Coordinate System
	Figure 9.4: A Touring Balloon
	Figure 10.1: A Trampoline
	Figure 10.2: Marking an Object as Physical
	Figure 10.3: A Car in Second Life
	Figure 10.4: Setting the Material Type
	Figure 10.5: A Car with Two Passengers
	Figure 12.1: Basic Particle Emitter
	Figure 12.2: A Fog Machine
	Figure 12.3: Snowflake Texture
	Figure 12.4: A Snowflake Emitter
	Listing 2.1: Display Variable
	Listing 2.2: Script Level Variables
	Listing 2.3: Simple Function
	Listing 2.4: Functions with Parameters
	Listing 2.5: Function that Returns Values
	Listing 3.1: A Hello Script
	Listing 3.2: A While Loop
	Listing 3.3: A While Loop Counts Backwards
	Listing 3.4: A Do/While Loop
	Listing 3.5: A Do/While Loop That Executes Once
	Listing 3.6: A For Loop
	Listing 4.1: Programming without State Machines
	Listing 4.2: Programming with State Machines
	Listing 4.3: State events
	Listing 5.1: String Comparison
	Listing 5.2: A Simple Notecard
	Listing 5.3: Reading Notecards
	Listing 6.1: Say Hello
	Listing 6.2: Instant Message
	Listing 6.3: A Second Life Dialog
	Listing 6.4: A Simple Pager
	Listing 6.5: The Green Button
	Listing 6.6: The Red Button
	Listing 6.7: The Root Prim that Receives the Messages
	Listing 7.1: Timer Events
	Listing 7.2: Working with Collisions
	Listing 7.3: A Water Splash
	Listing 7.4: Notecard Giver
	Listing 7.5: Tip Jar
	Listing 7.6: Guessing Game
	Listing 7.7: Owner Security
	Listing 7.8: Group Security
	Listing 8.1: Dumping List Data
	Listing 8.2: Display a List
	Listing 8.3: Convert a List to CSV
	Listing 8.4: Convert CSV to a List
	Listing 8.5: Getting List Statistics
	Listing 9.1: Display Current Position
	Listing 9.2: Display the Current Rotation
	Listing 9.3: Changing Object Location
	Listing 9.4: Changing Object Rotation
	Listing 9.5: Rotation with llTargetOmega
	Listing 9.6: Configuring the Balloon
	Listing 9.7: A Touring Balloon
	Listing 9.8: Balloon Seat Script
	Listing 10.1: Trampoline Script
	Listing 10.2: Main Car Script for the Root Prim (Car.lsl)
	Listing 10.3: Car Passenger Seat (CarSeat.lsl)
	Listing 10.4: Can't Sit Here (DontSitHere.lsl)
	Listing 10.5: Car Wheel (WheelScript.lsl)
	Listing 10.6: Rotate the Hubcaps (WheelScript.lsl)
	Listing 11.1: Random Color Cube
	Listing 12.1: Basic Particle Emitter (BasicParticle.lsl)
	Listing 12.2: A Fog Machine
	Listing 12.3: snowflake Emitter
	Table 2.1: Variable Types
	Table 5.1: Linden String Functions
	Table 6.1: Communication Distances
	Table 6.2: Message Target Types
	Table 8.1: Accessing Data in a List
	Table 8.2: Accessing Data in a List
	Table 8.3: Statistic Types
	Table 10.1: Vehicle Types
	Table 10.2: Floating Point Vehicle Parameters
	Table 10.3: Vector Vehicle Parameters
	Table 11.1: Constants for llSetPrimitiveParams
	Table 11.2: PRIM_TYPE Constants
	Table 11.3: Holeshape Constants
	Table 11.4: Bumpmapping Constants
	Table 11.5: Shininess Constants
	Table 11.6: Material Constants
	Table 12.1: PSYS_PART_FLAGS Flags
	Table 12.2: PSYS_SRC_PATTERN Values
	Table 12.3: Remaining Particle Emitter Name-Value Pairs
	Table 12.4: Fog Machine Attributes
	Table 12.5: Snowflake Emitter Attributes

